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Introduction

The usage of a password is still the simplest way to control the access to specific re-
sources. Although many other authentication factors have been developed—examples in-
clude identification cards, fingerprint or retinal patterns, voice recognition and other bio-
metric identifiers—, password authentication systems are easier to implement for most
applications, are relatively hard to break (note the term “relatively”!) and can thus pro-
vide accurate security, if used carefully. However, it is essential for the security that the
password is strictly kept secret, and that it is chosen in a way that makes it hard for an
attacker to guess it or to find it by try-and-error (also known as “brute force”). Both con-
ditions are closely connected, but in a rather fatal way: Passwords which are easy to
memorize for humans are for the most part disastrous in terms of security! Among these
bad examples we find personal data (names of family members, pets, meaningful places,
etc.), names and characters from favorite books, films or video games, simple words or
character sequences (such as the famous “qwerty”), and so on. These passwords are for
sure easy to memorize—but can often be guessed without much effort. How can we solve
this dilemma?

There are many ways to choose good (i.e., secure) passwords—but the best way is to let
a random generator choose a password. If these passwords are long enough, it will take
years, if not centuries, to find them by “brute force”. Computer programs like PWGen can
assist you in generating random passwords, as humans are not very good at making up
random numbers themselves. Unfortunately, random character sequences like zio5FcV7]
are fairly hard to memorize (although this is possible and probably not as difficult as you
might imagine), so you may want to try passphrases composed of words from a word list
instead: Five words from a word list with 8000 words or more are sufficient in most cases
to create a high-quality passphrase; moreover, the security can easily be increased by
adding some random characters.

The need for secure passwords has grown since the advent of the Internet and its many
websites where the access to certain resources (message board, user account, and so on)
is controlled by a user name/password pair. Fortunately, since the invention of so-called
password safes, you don’t have to remember all these passwords anymore—you just
store them in the password safe which is protected by a “master password” (that must be
memorized carefully, of course). As this master password is used to protect highly sensi-
tive data, it should conform to the highest security level possible. The security level,
which grows with increasing password length, is only limited by the user’s ability to mem-
orize random characters or words. With some effort, most people are certainly able to
memorize a 90-bit password.

PWGen is capable of generating cryptographically secure random passwords and
passphrases conforming to highest security levels. It can be used to generate master
passwords, account passwords and generally all sorts of random sequences. It also offers
the option to create lots of passwords at once. Just give it a try!



Program Features

Password generation based on a cryptographically secure pseudo-random
number generator (combination of SHA-256 and AES)

Entropy gathering by measuring time intervals between keystrokes, mouse
movements and mouse clicks; additionally, entropy from volatile system-specific
parameters is collected in regular time intervals

Generation of passphrases composed of words from a word list

Pattern-based password generation (formatted passwords) provides nearly
endless possibilities to customize passwords to the user’s needs

Generation of phonetic (pronounceable) passwords based on language-specific
trigram (3-letter sequences) frequencies

Numerous password options for various purposes

Generation of large amounts of passwords at once

“Password hasher” functionality

Secure text encryption (AES with 256-bit key)

Multilingual support

Full Unicode Support

Runs on all 32-bit & 64-bit Windows versions (i.e., Windows 95 [OEM SR2], NT 4.0,
98, 2000, Me, XP, Vista, 7, 8, 10; Windows Server 2003, 2008, 2012)*

1 Note: I have not tested PWGen on “legacy” Windows versions (< XP). I can only state that PWGen was
designed to be executable on these systems. Keep in mind that PWGen does not provide Unicode sup-
port on Windows 9x. PWGen is developed and mainly tested on Windows 7.



Unicode Support

PWGen provides full Unicode support as of version 2.3.0. The Unicode standard can—the-
oretically—encode up to 1,114,112 characters, and the latest version contains a reper-
toire of more than 110,000 characters. PWGen aims at providing full support for all those
theoretically possible 1,114,112 Unicode characters, especially in passwords (of course),
text encryption, file names, and translations of the program. Note that PWGen is still
compatible with older 32-bit versions of Windows (9x/Me) that provide only very limited
support for Unicode.

Keep in mind that you also need a suitable font to display Unicode characters. TrueType
and OpenType fonts can contain up to 65,536 characters, but most fonts on Windows
contain only a subset of the first 65,536 Unicode characters. You can use Windows’ char-
acter map utility (charmap.exe) to evaluate the fonts on your system with respect to the
characters contained in the font files.

Supported Encodings

Like Windows, PWGen uses UTF-16 (little-endian) as the default character encoding inter-
nally. UTF-16 encodes the most frequent characters in 16-bit units, but the number range
1-2'% (65,536) is actually not sufficient to encode all possible 1,114,112 Unicode charac-
ters, so some characters have to be encoded as 2x16-bit units. When reading or writing
Unicode text from/to files, however, PWGen supports further encodings besides UTF-16
little-endian, namely UTF-16 big-endian, UTF-8, and ANSI.

In UTF-16 big-endian, the byte order is simply reversed compared to UTF-16 little-endian.
UTF-8 is an 8-bit variable-width encoding, which means that each character is encoded as
1 to 4 bytes (8-bit units or “octets”). UTF-8 has the advantage that the first 128 Unicode
characters, which are encoded as 1 byte in UTF-8, correspond exactly to the 7-bit ASCII
character set, thus making ASCII texts valid UTF8-encoded Unicode, and vice versa (for
the first 128 Unicode characters).

ANSI is a non-Unicode 8-bit fixed-width encoding which extends the 7-bit ASCII standard
(characters 1-128) by additional 128 language-specific characters (characters 129-256).
This additional character set depends entirely upon the user’s codepage setting in
Windows, so ANSI-encoded texts containing non-Latin characters such as 6, é, i, 4, etc.,
written on a machine with a Western codepage setting, looks quite different on a comput-
er with a Greek codepage setting: The “special characters” would be replaced by charac-
ters from the Greek alphabet in this case, simply because the character sets which are
used to display the binary codes in the range 129-256 are different on both machines!
This cannot happen with Unicode-compliant encodings, since each valid binary code maps
to a fixed Unicode character. As a consequence, Unicode-encoded texts look the same on
all computers, irrespective of any language-dependent codepage settings in the operating
system.



PWGen can identify files containing Unicode text (either UTF-16 little-/big-endian- or UTF-
8-encoded) by the so-called “byte-order mark” (BOM) which is a 2-byte (UTF-16) or 3-
byte (UTF-8) sequence right at the beginning of the file. If no BOM is present, PWGen as-
sumes the file to be ANSI-encoded. PWGen is also capable of writing UTF-16- and UTF-8-
encoded Unicode text files, and conversion of Unicode to ANSI characters is supported,
too. The user can change the default file encoding in the Configuration dialog on the Files
page. (Note: PWGen’s configuration file, PWGen.ini, has a fixed UTF-8 encoding which
cannot be changed.)

Now which encoding should you use? Well, the answer to this question depends on your
language and your needs:

e ANSI: Using this encoding for texts containing ASCII characters exclusively is un-
problematic. However, if the text contains “special” language-specific characters
such as &, 6, etc., you may run into trouble if the text file is read on machines with
different codepage settings. Thus, ANSI encoding should only be used for Lat-
in-based alphabets, and when the text file is read on computers with the same lan-
guage settings.

e UTF-16 and UTF-8: The choice between UTF-16 and UTF-8 largely depends on the
character set of the text to be encoded, and also on the target application of the
encoded Unicode text. UTF-8 is more efficient with respect to file size for Lat-
in-based alphabets, whereas the alphabets of Greek, Cyrillic, Hebrew, Arabic, Cop-
tic, Armenian, Syriac, Tana and N’Ko require 16 bits in both UTF-16 and UTF-8.
The rest of the characters of most of the world’s living languages is more efficiently
encoded as UTF-16 (16 bits needed) compared of UTF-8 (24 bits needed). Further-
more, in Windows, which internally uses UTF-16, reading and processing UTF-8-
encoded files may be (slightly) slower in some cases because the encoding has to
be converted to UTF-16 before passing the text to Windows controls. On the other
hand, UTF-8 is the de-facto standard encoding of the Internet, and should there-
fore be preferred for Internet-associated document types.

e UTF-16 little-endian vs. big-endian: UTF-16 little-endian should be preferred on
the Windows platform.

Happy unicoding!



Password Generation with PWGen -
An Overview

PWGen will assist you in generating cryptographically-strong and easy-to-memorize pass-
words and passphrases. The “design philosophy” behind PWGen is to provide a simple-to-
use and unobtrusive, yet at the same time powerful and versatile application intended at

professionals (e.g., system administrators) and “norma
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home users.

PWGen allows you to generate various types of passwords and passphrases:

“Classical” passwords such as VLyw68JsSg@m, i.e., random sequences of charac-
ters from a specific character set (upper-case/lower-case letters and numbers in
the example).

Phonetic (pronounceable) passwords such as terweeptoton, which are gener-
ated by evaluating the frequencies of all possible trigrams (1 trigram = 3-letter se-
quence; for 1 trigram, there are 26° = 17,576 possible letter combinations) of a
certain language (English in the example).

Passphrases such as khaki cello waxy mecca verdi, composed of randomly cho-
sen words from a word list. Words may be easily combined with random characters
to give passphrases such as lends-ah susie-Tx chats-Hz joins-TE.

Formatted passwords / passwords based on patterns: This is the most ver-
satile password generation feature, for it provides a variety of format specifiers to
insert characters from pre-defined character sets and words from a specific word
list into the resulting password. Moreover, it allows for repeating and randomly per-
muting sequences in the password. Example: The format string %{%4u%41%2d%s%}
means “insert 4 upper-case letters, 4 lower-case letters, 2 digits, and 1 special
symbol; permute the character sequence afterwards”, and yields passwords such
as fP4eM#mAiV2.

“Hashed"” passwords, passwords based on a master password and a parameter:
Similar to the website Hashapass, this feature enables you to reproducibly gener-
ate unique passwords using a (secret) master password and a (not necessarily se-
cret) parameter, such as the name of a website. For example, the master password
gwerty (hint: don’t use that one, ever!) together with the parameter yahoo yields
the password W4hfOL21K3FYb8Qx. PWGen’s password hasher offers several pre-de-
fined character sets for the user to choose from. Being independent of any en-
crypted databases of stored parameter-password combinations, it may thus func-
tion as a fully portable “password safe”. In case you want to be independent of
Windows-based applications, PWGen can also provide full compatibility with the
Hashapass generator, which is accessible via the Internet and should work with any
browser.


http://www.hashapass.com/

To give the user an estimation of the quality of the generated passwords, PWGen displays
a “password quality bar” featuring a color range from red-orange (less secure) to dark
green (more secure). A password quality/security—or, in more technical terms, entropy—
of 128 bits is considered unbreakable by today’s computer technology, and, given the
huge complexity of the 128-bit key space (~3.4:10%), I really think one can be quite cer-
tain that 128-bit passwords and keys will remain secure for the entire era of humankind
on planet earth.



Step-by-Step Tutorial

In this section I want to elaborate on each step in creating a password. The main func-
tions of the program are accessible in PWGen’s main window, where you can adjust the
parameters for password generation. Here we go:

Include Characters

Include characterz [pass™wordz~]

Length: d b 47 characters / 5.6 bitz per character

v @ i

Character set:

Check Include characters to include characters in your password. Enter the desired
length of the character string in the Length field (maximum 10,000).

Enter the desired character set (i.e., all the characters that may occur in your password)
in the field below or choose one from the drop-down list. Note that, in a set, each charac-
ter must occur only once. PWGen aims at providing full Unicode support as of version
2.3.0, so you can (theoretically) enter up to 1,114,112 different characters. You can use
Windows’ character map utility (charmap.exe) to insert Unicode characters which are not
accessible via the keyboard.

Furthermore, you may use the following placeholders to abbreviate the sequence (some
placeholders may be further abbreviated to save space in the input box):

Placeholder(s) Meaning Character set

<AZ> upper-case letters ABCDEFGHIJKLMNOPQRSTUVWXYZ
<az> lower-case letters abcdefghijklmnopgrstuvwxyz
<09> digits 0123456789
<Hex> upper-case hexadecimal symbols 0123456789ABCDEF
<hex> lower-case hexadecimal symbols 0123456789abcdef
<base64>/ base64 symbols ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefg
<b64> hijklmnopqrstuvwxyz0123456789+/
<easytoread>/ |like <AZ><az><09>, but without ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefg
<etr> similar-looking (*ambiguous”) char- |hijklmnopgrstuvwxyz0123456789

acters (B8G6I11|00QDS5Z2 by de-
fault). See Advanced Password Op-
tions for more options.

without ambiguous characters

<symbols>/

additional symbols accessible via

PUH%&" () ¥+, -./:5<=>?@[\]1*_"{]| }~

<sym> the keyboard
<brackets>/ | brackets O[>
<brac>

<punctuation>/
<punct>

punctuation marks
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<highansi>/ |higher ANSI characters (symbols (characters depend on the current
<high> #127 to #255) ANSI code page)
<phonetic> generate phonetic (pronounceable) | <phonetic>: lower-case letters
<phoneticx> |passwords based on trigram <phoneticx>: mixed-case letters
frequencies of the English (or a (frequencies of the letters are
user-specified) language (see notes |language-dependent; English by
below) default)

You may provide a comment included in square brackets [...] at the beginning of the
entry. All characters in this comment will be ignored by PWGen. For example, entering
[This is a comment.]<AZ> will add only upper-case letters to the character set. Note that
the comment must be placed right at the beginning; otherwise, it will be treated as a nor-
mal sequence of characters!

If the text in the box is equal to <phonetic> or <phoneticx> (other characters are not al-
lowed!) PWGen will execute a special algorithm to generate phonetic passwords, i.e.,
passwords which are likely to be pronounceable. The <phonetic> version generates pass-
words composed of lower-case letters exclusively, whereas passwords generated with the
<phoneticx> version can contain both lower-case and upper-case (i.e., mixed-case) let-
ters. The algorithm is based on the language-specific frequencies of so-called trigrams,
which consist of three letters from the English alphabet (a-z, 26 symbols). Phonetic pass-
words look like this: rationeterbonte. You can also generate phonetic passwords based
upon another language by loading a “trigram file” containing the trigram frequencies
which are characteristic of that language (note, however, that this is only possible for lan-
guages the alphabets of which are Latin-derived!). For example, using the trigram fre-
quencies stored in the file German.tgm yields passwords such as gergenfortenman. To load
a trigram file, you have to modify the Advanced Password Options. You may also create a
trigram file yourself by evaluating a dictionary, word list, or any other text of your choice
(see Tools / Create Trigram File (F6) in the main menu).

The algorithm for generating phonetic passwords is sensitive to the options “Include at
least ..." (see: Advanced Password Options), so you may include an upper-case character,
digit, and/or special symbol in the resulting password in order to increase the security. It
is, however, not possible to combine the <phonetic(x)> password rule with other charac-
ter sets (digits, symbols, ...) because this would destroy the “pronounceability” of the se-
quence. Alternatively, you can use the placeholder %q in a format sequence and combine
it with any other character set (see: Format Password).

The character set will be updated as soon as you leave the input field, e.g., by clicking on
another interaction element. The entropy (number of bits per character) is displayed on
top of the Character set field: For “normal” (non-phonetic) passwords, it is calculated as
log,N, where N is the number of characters and log; is the logarithm base 2; for phonetic
passwords, the entropy is lower than log,26 because the letters all have different fre-
quencies (~3.6 bits per character for the default trigrams).
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Clicking on the symbol ¢ opens a quick help box containing the most important infor-
mation.

Clicking on the symbol ﬂopens a message box where each character of the currently
loaded set is displayed.

Errors occur when the set contains less than two unique characters. Keep that in mind if
you want to generally exclude ambiguous characters (see below).

Include Words

| Include words (pass*phrases™)

™

Mumber: 2

x 8192 words [ 13.0 bits per word
Word list file: C:'\Projekte\PWGen2wordlistswordlist_gen - 'i_j' A,
| Spedify length™; 8 Combine words with characters

Check Include words if you want to include words from a word list in your password.
Enter the desired number of words into the Number field (maximum 100).

By default, PWGen uses an internal English word list containing 8192 (2*'%) words. If you
enter <default> into the Word list file field or if you simply leave this field blank, PWGen
will use its internal list. However, you may enter the name of your own word list file into
this field; alternatively, you can click on the symbol'+, to browse through your folders
and select a file. Note that PWGen supports Unicode word lists and is capable of reading
Unicode text files encoded as UTF-16 or UTF-8 if the file contains the corresponding byte-
order mark (BOM) at the beginning of the file. (Of course, ANSI-encoded text files are
supported, too.)

The word list will be loaded as soon as you leave the input field, e.g., by clicking on an-
other interaction element.

To reload a word list from an already loaded file, load the default list, then load the pre-
vious file again by selecting it from the drop-down list.

By default, PWGen accepts words that have at most 30 (Unicode) characters; however,
you can reduce this limit in the Advanced Password Options dialog. The number of bits
per word is calculated as log.N (with NV being the number of words) and will be displayed
on top of the Word list file field. The size of word lists is limited to 1,048,576 (2%°) words.

Clicking on the symbol &y will show some information about the currently loaded word
list.

Errors occur when the word list cannot be opened (for whatever reason), or when it con-
tains less than two valid words.
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Select Combine words with characters to generate passwords as a combination of
words with characters. This means that each word will be combined with one or more
characters, depending on the number of words and the number of characters, respective-
ly. Example of 3 words combined with 8 characters by a “-"
faint-fT.

symbol: putty-fuV umbra-Sxq

Select Specify length to specify a length range for the passphrases in the edit box on
the right. This option may be helpful for word lists the words of which exhibit a wide
range of lengths, as in case of the default English word list. If activated, only passphrases
with lengths conforming to the specified length range are allowed, whereas non-conform -
ing passphrases will be discarded. Here, “length” refers to the total number of characters
in the resulting passphrase, including all words, characters from the password, spaces,
etc. Depending on the length specification, it may take some time until a randomly gener-
ated passphrase finally meets the length criterion; in the worst case, there is no
passphrase combination at all that meets the criterion. When the number of failed at-
tempts reaches 1000, a progress window with a Cancel button will be shown, which al-
lows the user to cancel the process to avoid infinite loops.

The length can be specified in various formats:

Format (M,N=number) Meaning
N Length must be exactly N (characters)
M-N Length must be at least M and at most NV
>N Length must be greater than N (at least N+1)
>=N Length must be at least NV
<N Length must be less than N (at most N—1)
<=N Length must be at most NV

Note that a length of 0 is not allowed. Apart from the check for 0, PWGen does not check
the validity of the specified length range for the current password/passphrase settings. It
is the user’s responsibility to provide a length range which “"makes sense” with the current
settings.

The label of the checkbox is marked with an asterisk (*) to indicate that this option can
decrease the password security. The extent of this reduction depends on the width of the
restriction in most cases: The shorter the passphrase and the narrower the length range,
the greater the potential decrease in security. Yet filtering out short passphrases may ac-
tually be beneficial overall because short passphrases, when treated as passwords (i.e.,
sequences of characters), tend to be insecure compared to long passphrases. Thus using
a length specification such as “>N" (see table above) can effectively increase the security
by avoiding short and insecure passphrases.

13



Format Password

Format password: LEW E4d w

Select Format Password to format your password or passphrase generated via Include
Characters or Include Words, respectively. Additionally (or alternatively), you can use for-

mat specifiers and placeholders to introduce random characters from various character
sets, and random words from the word list.

Format strings can contain two types of characters, format specifiers and literal char-
acters. Literal characters are copied verbatim to the resulting password. Format speci-
fiers begin with a “"%"” character and can be used to insert random characters/words or to
manipulate the input sequence (e.g., by randomly permuting a character sequence). A lit-
eral percent sign can be inserted into the resulting password by the sequence %%.

Format specifiers have the following form: %[ *]J[number](specifier). All format speci-
fiers begin with a “%" character. Arguments enclosed with square brackets “[]” are op-
tional, those enclosed with brackets ()" are required.

e The optional number argument indicates how many times the format command is
to be repeated; it can be a decimal number in the range from 1 to (theoretically)
99,999. If number is not specified, “1” is assumed by default. Alternatively, this ar-
gument can also be specified as a number range in the form N1-N2; then, a ran-
domly chosen number between N1 and N2 will be inserted.

e The specifier argument is the actual format specifier or placeholder for a random
character from a certain character set (see below for a list of format specifiers) or
for a random word from the currently loaded word list.

e The optional asterisk (*) argument instructs the program to use each character/
word in the following sequence only once. In this case, the number of characters/
words is limited to the size of the character set/word list. This argument can be
placed anywhere between the percent sign and the format specifier. Note that if
the asterisk is specified but the number argument is omitted, the size of the char-
acter set or of the word list, respectively (depending on the format specifier), will
be used as the default humber.

Examples:
e %u means “Insert 1 random upper-case letter”
® %20a means “Insert 20 random lower-case alphanumeric characters”

e %*5-10d means “Insert between 5 and 10 (exact number chosen randomly) ran-
dom digits, each digit must occur only once in the sequence”

e %*d means “Generate permutation of digits 0-9".
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The length of formatted passwords is currently limited to 16,000 (Unicode) charac-
ters.

Some format specifiers have special meanings (“/N]” means that the number argument
may be specified optionally):

e %P: Insert the password generated via Include characters and/or Include words.
The password can be inserted only once! A “warning” message will be displayed on
top of the input field, if ...

o Include characters or Include words is checked, but %P is not specified in the
format string ("%P is not specified.”);

o 9P is specified, but neither Include characters nor Include words is checked
(“%P: password not available.”);

o the password is too long to insert it, i.e., inserting the full password exceeds
the size limitation of the formatted password (“%P: password too long.”).

Example: Entering This is your password: “%P”. may result in a password like
this: This is your password: “Zq3wu9gL”.

® %[N]Jw or %[NJW: Insert random word(s) from the currently loaded word list (see
above). In case of multiple words (N > 1), the words are separated by a space if
the specifier is w (lower-case), or they are not separated at all if the specifier is W
(upper-case). Note that Inc/lude words doesn’t have to be checked in order to use
the word list for formatted passwords.

Example: %5w to dod zion belt xylem avery

e %[N]J[...%]: Repeat the sequence included in the brackets %[ and %] N times.
Repeat sequences may be nested up to 4 times (e.qg., %5[...%4[...%3[...%2[...%]
%] %] %]).

Example: %5[%a%d%] to u902p9r2a8

o %[N]J{...%}: Randomly permute the sequence included in the brackets %<{ and %3}
and insert N characters from the permuted sequence. Nesting is not possible (be-
cause it doesn’t make any sense). Please note that, when PWGen calculates the
quality/security of the resulting password, it does not take into account the securi-
ty gain caused by the random permutation, which is very likely unless the permut-
ed sequence consists of characters from only one single character set (in the latter
case, there wouldn’t be any increase in security). An exact calculation of this secu-
rity gain is not trivial and can be computationally expensive, so this feature is cur-
rently not available. However, you can try to calculate the gained security bits by
this formula:
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S = logz(N! / (ni! na! ... nl)), where N is the total number of characters in the per-
muted sequence, and n; are the numbers of characters from a specific character
set.

Examples: (1) %{hello world!%} to 1dloor w!lhe
(2) %{%91%d%} to euvk8bfifg

e %[N]<...%>: Treat the sequence included in the brackets %< and %> as a charac-
ter set, and choose N random characters from this set. Note that within this se-
quence, format specifiers don’t have any effect (except for %> which ends the se-
quence); each character will be used “as-is”. Note that it is possible to use abbrevi-
ation codes, i.e., placeholders for character sets (see Include Words), such as <AZ>,
<@9>, and so on.

Example: %10<<az>0123%+/%> to ro/bpya%oy

Comments enclosed in square brackets [...] may be provided at the beginning of the
sequence (and only there!).

Here is a complete list with the format specifiers which are currently supported by PWGen
(most placeholders for the character sets are identical to those available in the built-in
password generator of the application KeePass):

Format Meaning Character set
specifier/
placeholder
1) Placeholders for random characters from various character sets (asterisk and
number argument may be specified optionally in all cases)
%ox insert random character(s) from the (user-defined)
user-defined character set (as given in
the input field below Include
characters)
%a lower-case alphanumeric abcdefghijklmnopqgrstuvwxyz0123456789
%A mixed-case alphanumeric ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghij
klmnopgrstuvwxyz0123456789
%U upper-case alphanumeric ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
%E mixed-case alphanumeric, but without | ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefg
ambiguous characters hijklmnopgrstuvwxyz0123456789
without ambiguous characters
%d digit 0123456789
%h lower-case hexadecimal 0123456789abcdef
%H upper-case hexadecimal 0123456789ABCDEF
%l lower-case letter abcdefghijklmnopgrstuvwxyz
%L mixed-case letter ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghij
klmnopqrstuvwxyz
%u upper-case letter ABCDEFGHIJKLMNOPQRSTUVWXYZ
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%v lower-case vowel aeiou
%V mixed-case vowel AEIOUaeiou
%2 upper-case vowel AEIOU
%c lower-case consonant bcdfghjklmnpgrstvwxyz
%C mixed-case consonant BCDFGHIKLMNPQRSTVWXYZbcdfghjklmnpgrs
tvwxyz
%z upper-case consonant BCDFGHJIKLMNPQRSTVIWXYZ
%p punctuation marks -
%b brackets OLI{}<>
%s special symbols (may be user-defined) | ! "#$%&"' ()*+,-./:;<=>?@[\]1*_"{|}~ (or
user-defined)
%S mixed-case alphanumeric and special |ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghij
symbols klmnopgrstuvwxyz0123456789!"#$
%B&' (V*¥+,-./:3¢<= >@[\]1*_"{|}~
(special symbols may be user-defined)
%y higher ANSI characters (symbols (characters depend on the current
#127 to #255) ANSI code page)
%q generate phonetic password composed | abcdefghijklmnopgrstuvwxyz
of lower-case letters exclusively (frequencies of the letters are
language-dependent; English by
default)
%Q generate phonetic passwords ABCDEFGHIJKLMNOPQRSTUVWXYZ

composed of mixed-case letters

abcdefghijklmnopgrstuvwxyz (see
notes above)

2) Special format specifiers (possible usage of optional arguments is indicated in italics)

%P insert password generated via Include characters and/or Include words;
password may be inserted only once
%/[*][N]Jw |word from word list; multiple words are separated by a space
%[*]J[N]JW |word from word list; multiple words are concatenated without any separators
%/[N][ repeat input sequence included in the brackets N times; maximum nesting
%] depth is 4
%/[N]{ randomly permute formatted sequence included in the brackets and keep N
characters from the permuted sequence
%}
%[N]< treat the character sequence included in the brackets as a character set and
%> insert NV characters from this set

With the format option at hand, you can easily define your own rules for creating pass-
words for specific purposes. Some examples are given in the following table.

Rule

Format sequence

4 upper-case letters, 4 lower-case letters, 2 digits, 1
special symbol in random order

%L %AU%A1%2d%s%}

8 alphanumeric characters, of which at least 1 is a letter

and at least 1 is a digit
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4 artificial words, where each word consists of 6 letters
and is composed of alternating consonants and vocals

%A[%3[%c%v%] %]

I\\

3 artificial “phonetic” words (generation is based on
trigram frequencies) with 8 letters each

%3[%8q %]

phonetic password interspersed with digits and special
symbols

%60%2d%s%6q%2d%s

5 words from the currently loaded word list, each
combined with 2 digits

%5[%w-%2d %]

random permutation of upper-case letters

%*u

random number in the range 0123-9876, each digit must
occur only once

%*4d

10 alphanumeric characters, first character must not be a
lower-case letter

%U%OA

random product ID

%5d-0EM-%7d-%5d

hexadecimal 128-bit key (e.g., WEP key)

%32h

random MAC address (48-bit)

%5[%2h-%]%2h

12 random base64 symbols

%12<<base64>%>

128-bit key in binary notation

%128<01%>

8 random characters from the German alphabet %8<<AZ><az>A0Ua01R%>

%3[%3[%<bcdfghjklmnpgrstvwxyzl
%>%<aeiouddiu%s>%] %]

3 artificial German words, where each word consists of 6
letters and is composed of alternating consonants
(including B) and vocals (including &, 6 and i)

At least 4, at most 8 words from the currently loaded word | %*4-8w

list, each word must occur only once

Advanced Password Options

Clicking on this button opens a dialog where you can activate or deactivate some “ad-
vanced” password options:

e Exclude ambiguous characters: Excludes those characters from character sets
that might be confused with other similar-looking characters (that is, by default,
B8G6I11|00QDS5Z2). As this option reduces the size of the character set, the pass-
word security will be reduced accordingly. This option also applies to formatted
passwords and affects all character sets encoded by the placeholders %a, %A,
%U, etc. This option does not affect phonetic passwords.

e First character must not be a lower-case letter: Activate this option if you
don’t want the first password character to be a lower-case letter (a-z). This might
be useful when copying passwords to certain word processors or e-mail programs
that automatically convert the first character to upper-case in case it is a low-
er-case letter, thereby manipulating the original password. If the first character be-
longs to a word, it will simply be converted to upper-case. If it is, however, a ran-
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dom character, PWGen will choose a character that is not a lower-case letter (for
example, if the character set consists of lower-case letters and numbers, the first
character will be a number). If the character set does not contain any non-low-
er-case letters, the first character will be an upper-case letter. Note that activating
this option (slightly) reduces the password security.

Don’t separate words by a space: By default, PWGen inserts spaces to separate
words in passphrases. Select this option to deactivate this behavior.

Don‘t separate words and characters by a '-' character: By default, PWGen
inserts a minus sign (*-") between a word and a character (when the option Com-
bine words with characters is selected). Select this option to deactivate this behav-
ior.

Reverse default order of character/word combinations: When you generate
passwords/passphrases consisting of both characters and words, PWGen by default
puts the characters at the beginning and appends the words. If Combine words
with characters is activated, a subset of the character sequence is appended to
each word (e.g., wordl-3wp word2-k8#). If you activate this option, however, the or-
der is reversed in each case: If Combine ... is activated, each word is appended to
a subset of characters (e.g., 3wp-wordl k8#-word2); otherwise, the words are put
first, and the characters are appended.

Include at least ...: Activate these options to include at least one character from
the given character sets, upper-case letters (A-Z), lower-case letters (a-z), digits
(0-9), and special symbols (!"#$%&' ()*+,-./:;<=>2@[\]*_" {]|}~, or user-defined
symbols, see below). If the user-specified character set does not contain any char-
acters from a predefined set, the resulting passwords will contain exactly one char-
acter from this predefined set. Otherwise, they will contain at /east one character
from this set. For example, if you specify a <az> character set and activate all of
the aforementioned options, PWGen will generate passwords like this one:
t]cXy7cu. (If the desired password length is less than 4, not all characters can be
included, of course.) Depending on the user-specified character set, selecting these
options can—rather slightly—reduce (but in some cases also increase) the pass-
word security. Note that these options do not affect the generation of passphrases
or formatted passwords.

Only include characters from custom character set: This option refers to the
Include at least ... options explained above. If activated, characters from the user-
defined (custom) character set will be used exclusively for generating passwords.
For example, if the character set is defined as abcdEFGH@12345+/ and all four In-
clude at least ... options are activated, generated passwords will contain =1 low-
er-case letter from the set abcd, =1 upper-case letter from the set EFGH, =1 digit
from the set 812345, and =1 special symbol from the set +/. If the custom set does
not contain any matching characters from a given Include ... character set, charac-
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ters from that set will not be included in the resulting password. This would be the
case for the custom character set abcdEFGH@12345 and the option Include at least
one special symbol: As the custom set does not contain any special symbols, gen-
erated passwords will not contain any special symbols either. Also, note that the
“special symbols” character set may be redefined (see below), which would also af-
fect this option with respect to matching characters in the custom character set.
The option has no effect on phonetic passwords, i.e., these passwords always con-
tain characters from the default Include ... character sets if the corresponding op-
tions are selected.

Exclude repeating consecutive characters: Choose this option if you want to
avoid repeating sequences of the same character, as in r3aa5ziK or EQu555Wp, for ex-
ample. If this option is activated, each character in the sequence will be different
from the previous one. This option certainly reduces the security of the passwords,
but the extent of this reduction strongly depends on the size of the user-defined
character set: For large character sets, this effect becomes almost negligible. For
example, if your set contains 64 characters (6 bits per character) and the pass-
word length is 16, the loss of entropy is only 0.34 bits of 96 bits (0.35%). The ef-
fect is more pronounced for small character sets: If your set contains only 4 char-
acters (2 bits per character) and the password length is 48, the loss of entropy is
19.5 bits of 96 bits (20.3%). This option also applies to formatted passwords.

Exclude duplicate entries in password lists: Select this option if you want to
generate “unique” password lists where each entry occurs only once. Generating
unique lists may take longer than usual due to the extra check whether the entries
to be added already exist in the list. It also requires roughly the double amount of
memory. In certain cases, it might not be possible to generate complete password
lists using the parameters given by the user; for example, if the user chooses
0123456789 as the character set (= 10 possibilities) and “3” as the password length,
it is not possible to generate a list of more than 1000 (= 103) unique entries, since
the total number of possible password permutations is limited to this exact num-
ber. As a consequence, the security of the entire password list is decreased, be-
cause the number of possibilities decreases from top to bottom in the list. Howev-
er, when a single password independent from the rest of the list is considered, it
retains its designated security. Note that you can cancel the generation process
any time.

Convert all words in word lists to lower-case: When loading word lists, each
word in the list must occur only once, and the words are compared in a case-sensi-
tive manner. So if you don’t want the list to contain both upper-case and low-
er-case words, you can activate this option and thus force PWGen to convert each
letter in a word to lower-case.

Each character/word must occur only once: In passwords, each character will
occur only once; in passphrases, each word will occur only once. Note that this op-
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tion limits the password length and the number of words to the size of the charac-
ter set and of the word list, respectively; if you enter a number exceeding this lim-
it, you will receive a warning message, and the number will be decreased automat-
ically. Also note that this option al/ways decreases the password security: For ex-
ample, if the size of the character set is given by N, and M characters are to be in-
serted from this set, the entropy of the resulting sequence can be calculated ac-
cording to S = M log,N or Srqd = loga(N!/(N—-M)!) if this option is deactivated or ac-
tivated, respectively. Due to the factorial terms S, is always smaller than S (for M
> 1). The effect of entropy reduction becomes less pronounced with increasing N
and comparably small M (N >> M): For N = 26 and M = 12 (e.g., 12 random let-
ters), S is 56.4, whereas S, is 52.0, corresponding to an entropy reduction of 8%.
However, for N = 8192 and M = 12 (e.g., 12 random words from the standard
word list), the effect is practically negligible (156 vs. 155.99, corresponding to a
reduction of 0.006%). When this option is activated or the “asterisk” (*) argument
in formatted passwords (see: Format Password) is used, PWGen calculates the re-
duced entropy S for the resulting password.

Most of these options can potentially—but not necessarily!—reduce the security of the re-
sulting passwords. See the corresponding notes for the options above for more details. If
one or more of these options are activated, the caption of the Advanced button is marked
with the sequence “(!1)".

Tip: Right-clicking on the list of options opens a menu where you can (de)select all items
or invert the current selection.

Redefine ambiguous characters: The set of ambiguous characters is defined as
B8G6I11|00QDS5Z2 by default. Redefining this set also affects the other pre-defined charac-
ter sets (i.e., <AZ>, <az>, <09>, etc., as well as all the character sets accessible via the
Format Password option). You can also supply this character set in groups of similar-look-
ing characters, separated by a space. Then, each group of this set is only excluded from
the user-defined character sets if they contain two or more characters from this group; if
only one character is used, the group will not be excluded. Please note that

e a group must consist of at least two characters;

e each character must only occur once in the whole sequence, i.e., it cannot be part
of more than one group;

e Yyou can still exclude the space character itself by supplying it at position 1 or 2 in
the sequence (e.g., 1 00QD is not a valid definition of groups, so the sequence will
be treated as a “normal” set of ambiguous characters, including the space charac-
ter);

e group definitions exclusively apply to user-defined character sets (i.e., via option
Include Characters and via format specifier %<...%>). For all pre-defined character
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sets, all ambiguous characters present in the sequence will be excluded, indepen-
dent from any group definitions!

Example: Enter B8 G6 I11| @0QD S5 Z2 to define six groups of similar-looking characters.
If your character set is defined as <az><@9> (i.e., lower-case letters and digits), only the
characters 1 and 1 from group 3 will be excluded, whereas all the characters from the
other groups remain unaffected, because your character set doesn’t contain any other
characters from the groups which might be confused with the characters in the set. All
groups will be excluded, however, if you add upper-case letters to the set.

Redefine special symbols: The set of special symbols is defined as 1"#$
%&" ()*¥+,-./:;<=>2@[\]”*_ {|}~ by default. Redefining this character set affects the <sym-
bols> character set, the option Include at least one special symbol, and the correspond-
ing placeholder character sets in the Format Password option.

The field Maximum length of words in word lists should be self-explanatory. When
loading a word list, only those words the lengths of which do not exceed this value will be
added to the list. The maximum word length can range between 1 and 30 (default).
Changing this value is particularly useful to filter out very long words, or to reduce the
size of the entire word list. Note that this option does not apply to the default word list
but only to lists from an external source.

Trigram file for generating phonetic (pronounceable) passwords: Here you can
specify a special “trigram file”, i.e., a file containing the frequencies of all 17,576 (26°)
possible trigrams (= 3-letter combinations: aaa, aab, ..., zzz) for a given language. This
file should have the extension “.tgm”. PWGen uses the trigram frequencies to generate
phonetic passwords (see Include Characters). Trigram files can be downloaded from the
PWGen download page, but you may also create your own files via the menu item Tools /
Create Trigram File (F6) in the main menu. If the input field is left blank, PWGen will use
its internal (English) trigram table.

Generate Multiple Passwords

Multiple passwords: | 2000 |'§t’

If you want to generate more than one password and display the list in a separate win-
dow, enter the exact number into this field (maximum 2,000,000,000) and click on Gen-
erate. The program will open a window showing the password list. Right-click into the
window to access the context menu with additional functions:

e Copy: Copies the current text selection to the clipboard.

e Encrypt & Copy: Encrypts the selected text and copies the ciphertext to the clip-
board (see also: Encrypt/Decrypt Clipboard (F3/F4))
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e Select All: Selects the entire text.
e Save As File: Writes the text to a file of your choice.
e Change Font: Changes the text font.

You may also drag & drop the password list or a selection thereof by left-clicking on a
text selection, holding the mouse button, and dragging the text to other applications
which have been registered as “drop targets”.

Note: PWGen is a 32-bit application and thus cannot handle more than 2 gigabytes
(2,147,483,647 bytes) of RAM. Considering a safety factor of ~4 for various buffering op-
erations and Unicode transcoding, PWGen limits the size of memory buffers for password
lists to 500,000,000 bytes. Generating very large lists may exceed the available memory
(of your system or of the program) and cause an “out of memory” error. If the option Ex-
clude duplicate entries in password lists (see: Advanced Password Options) is activated,
the memory requirement is roughly doubled due to the creation of a binary search tree,
which allows for a fast search of the existing password entries.

If you want the list to be directly written to a file instead of being displayed in a win-
dow, click on the button|=land specify a file where the list is to be stored. PWGen will
write each password to this file without any limitations regarding RAM requirements. In-
stead, this process only requires negligible 64 kilobytes of memory, and the amount of
data that can be generated is only limited by the free disk space on the device. Thus, you
can theoretically generate several gigabytes of data (and more ... but note that I have not
tested this myself!). Note that this low memory requirement does not apply to unique
lists generated with the option Exclude duplicate entries.

As of version 2.3.0, PWGen is capable of writing Unicode-compliant text files encoded as
UTF-16 or UTF-8 (depending on the corresponding setting under Files in the configura-
tion; 8-bit non-Unicode ANSI conversion is supported, too). Each generated password will
be encoded accordingly before being written to the file.

If the destination file already exists, you have the possibility of extending the list by ap-
pending new passwords to the file. This function is not compatible with the option Exclude
duplicate entries, i.e., the newly generated passwords will not be checked against the al-
ready existing passwords in the file. Instead, a new unique list will be generated and ap-
pended to the file.

If you generate a larger amount of passwords (more than, say, 1000 passwords), PWGen
shows a progress window with a Cancel button. Click on Cancel to stop the process and
show a list of the passwords which have been generated so far.
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Generate Single Passwords

Generated Pazsword

i:nrm.m false teaching vou elastic 1210 e

61 bits / 37 characters

If you want to generate one single password, click on Generate. PWGen will display the
password in the box.

The estimated security of the password is indicated by the colored “security bar” below
the password box. The color of this bar ranges from red-orange to light green, i.e., from
“low security” to “high security”, where the limit for “highest security” has been—more or
less arbitrarily—set to 128 bits (which is just some kind of a "*magic number” for cryptog-
raphers). Always stay on the green side when generating “serious” passwords!

Drag & Drop: Left-click on the security bar or on the “Generated Password” group box
(on top of the password box) and hold the mouse button to start a drag & drop operation.
Keep the button held down while dragging the password into other applications which
have been registered as “drop targets”. If the password box contains a selection of char-
acters, only this selection will be dragged & dropped. Otherwise, the entire password will
be used. Conversely, you can also drop text from other applications into the password
box, provided that the Editable option (available in the context menu of the box) is en-
abled.

Note that the security of a single password is limited to 256 bits because the “random
pool” which is used to generate passwords has an effective size of 256 bits (which corre-
sponds to the message-digest length and the key length of SHA-256 and AES, respective-
ly). However, if the random pool hasn’t been filled with enough entropy before password
generation, the actual security is lower than the value shown in this field—to be more
precise here, the pool must have been filled with at least N bits with N being the pass-
word security. For more information on this topic, see: How shall I interpret the informa-
tion about the random pool?

If—for whatever reason (severe paranoia?)—you want to create a password with a securi-
ty of more than 256 bits, you may concatenate two or more 256-bit passwords to a 512-
bit (or more) password. This is done as follows: First, collect entropy for a 256-bit pass-
word, generate it and store it somewhere; then collect entropy for a second password and
concatenate that with the first one. Note, however, that there are absolutely no concerns
that it will ever be possible to break 256-bit keys.

PWGen also offers you the possibility to test your own password creations. Right-click in
the password box to open the context menu and activate the options Editable (allows
editing the contents of the text box) and Enable Password Testing. Now you can type
into the box or paste text from the clipboard, and PWGen estimates(!) the security/quali-
ty (in bits) of the entered sequence. A leading asterisk symbol (*) will be displayed in the
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label (i.e., “*xx bits / xx characters”), indicating that the displayed security value in bits
is roughly estimated and therefore not exact. Note that the underlying algorithm is quite
simple and does not make use of any sophisticated statistical tests for randomness (e.g.,
autocorrelation, runs test, entropy estimation, etc.), since passwords—even though they
may be chosen randomly—are typically much too short for these kinds of tests to be ap-
plicable. As a consequence, the algorithm tends to underrate passwords (consisting of
random characters) and to overrate passphrases (consisting of random words from a
word list). Furthermore, please note that PWGen does not test for popular (= bad) pass-
words like “qwerty”, “1234"”, and so on. So please apply some common sense when judg-
ing passwords!

Clicking on the symbol =** hides the password characters behind asterisks (***).
You can change the font which is used to display the password by right-clicking in the box

and selecting the entry Change Font from the context menu.

Random Pool

Random pool

Entropy bits: 362/256 | | &

This progress bar informs you about the current state of the random pool, i.e., the
amount of entropy bits the pool can currently provide. Whenever you generate one or
more passwords, N-p bits will be “consumed” from the pool (N = number of passwords, p
= bits of entropy present in every password).

You can provide entropy by moving your mouse, by clicking with your mouse and by typ-
ing on your keyboard. Furthermore, the program regularly collects entropy from various
system parameters.

As stated above, the random pool can yield a maximum Shannon entropy of 256 bits.
However, PWGen also shows the non-limited entropy amount (possibly exceeding 256
bits), which might be of interest if you don’t trust PWGen'’s estimations regarding the en-
tropy content of the different sources. So the message “Entropy Bits: 416/256" means
that you have provided 416 entropy bits so far, and that the random pool has reached
maximum entropy according to PWGen’s estimations. The non-limited entropy counter is
increased (up to 9,999 maximum) as long as you don’t generate any passwords. Whenev-
er you “consume” entropy from the pool, the “total entropy” counter will assume a value
less than 256 bits, of course. Additionally, there is a total entropy counter which counts
the amount of entropy gathered by the program during its runtime (up to 999,999,999
maximum), and which is not decreased after consuming entropy from the pool. The value
of this counter is displayed in the context menu of the progress bar (right-click). You can
reset the counters by selecting Reset Counters from the menu (this will not affect the ac-
tual contents of the random pool in any way).
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If the blinking of the progress bar irritates you, click on the symbol ®to hide the en-
tropy progress.

M ai n M e n u File Tools ©Options Help

Note that some of the following functions can also be accessed via the toolbar buttons
right below the main menu.

File

Profile

Shows a submenu containing all password generation profiles. To load a profile, select the
respective menu item or press the designated key combination?® (<Shift>+<Alt>+<0>,
+<1>, ..., +<9>, +<A>, ..., +<Z>). All the settings for generating passwords (including

advanced password options, if saved additionally) will be restored according to the select-
ed profile.

Profile / Profile Editor (<F10>) EI

Profile Editar

test Load

Job [4]

-

Delete
Confirm

Profile name:

Save "advanced password options” for this profile

Close

In this dialog, you can manage your profiles, i.e., add/overwrite, load and delete profiles.
Note that the number of profiles is limited to 50, and that profiles which contain addition-
al advanced password options are marked with “[+]".

Add/overwrite profiles: Enter the name of the profile into the Profile name box and
click on Add. Activate Save "advanced password options” for this profile if you want
to explicitly store the advanced options with this profile; if you leave this option deactivat-
ed instead, the current advanced options will never be modified when loading this profile.

2 The key combination used to be <Ctrl>+<Alt>+... in previous versions, but the <Ctrl>+<Alt> combi-
nation equals the <AltGr> key in Windows, which leads to ambiguities when the user tries to access
alternative characters on the keyboard using the <AltGr> key.



If a profile with an identical name already exists and Confirm is activated, you will be
asked to confirm the overwriting.

Load a profile: Select the profile of your choice and click on Load, or double-click on the
entry.

Delete profiles: Select the profile(s) you want to delete and click on Delete. If Confirm
is activated, you will be asked to confirm the deletion.

Note that there are no OK and Cancel buttons in this dialog; all changes to the profiles
are made active instantaneously, and there is no possibility to undo an accidental deletion
within a PWGen session. To restore the profile settings to the “start-up state” (initial set-
tings loaded from the configuration file on start-up), close the window, make sure that
the Options / Save Settings on Exit menu item is deactivated, and restart the program.

Exit (<Alt>+<Q>)

Closes the application.

Tools
Clear Clipboard (<F2>) ?

Clears the text contents of the clipboard.

Encrypt/Decrypt Clipboard (<F3>/<F4>) UQI

Encrypts or decrypts the clipboard text and stores the result in the clipboard. At first you
have to enter a password which can be of any length. The clipboard text (if there’s any)
will then be en-/decrypted using a secure 256-bit key derived from this password. The
encryption algorithm is AES with a key length of 256 bits. Note that the text is com-
pressed before encryption. (For more information about the exact encryption procedure,
see: Text Encryption.) The ciphertext will be converted to the base64 format consisting of
letters (A-Z, a-z), numbers (0-9) and the symbols “+”, */” and possibly “=". In the result-
ing text, lines are automatically wrapped after 76 characters. It is, of course, strongly
recommended to check the encryption before discarding the plaintext. If decryption fails,
you probably entered a wrong password. Another possibility is that the text is corrupted,
i.e., it has been modified in some (bad) way. Note that decryption will always fail if one or
more characters in the ciphertext have been altered (except for characters involved in line
breaks). Inserting or removing line breaks in the ciphertext does not pose a problem.

The clipboard encryption is not intended for encrypting very long texts. (Please use a file
encryption utility for this purpose.) To avoid memory problems, PWGen currently limits
the text length to 128 megabytes.

Important note: The encryption scheme has been changed (again) in version 2.3.0 to
provide Unicode support. The plaintext is converted to UTF-8 before compression and en-
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cryption. For backwards compatibility, i.e., to decrypt ciphertexts generated with older
versions, you can select the option PWGen <2.3.0 in the password dialog when decrypt-
ing texts. It is strongly recommended to re-encrypt any existing ciphertexts with the new
version.

Create Random Data File (<F5>)

-

Create Random Data File @

File name: C:'random.dat
File size: 256 Bytes -

[ Create file ] | Close |

Creates a file consisting of purely random (i.e., cryptographically random) data. First, se-
lect an existing file (by clicking on the Browse "“...” button) or enter the name of the
file where the random data is to be stored. Then enter the desired file size in bytes,
kilobytes (1,024 bytes) or megabytes (1,048,576 bytes) and select the appropriate list
entry. Note that you can enter floating-point humbers (e.g., "0.5", “3.14", “2.25e3", etc.),
but the number of bytes to write will be converted to an integer, of course. In case of a
file size of more than 1 megabyte, you have the possibility to stop the creation process by
clicking on the Cancel button in the progress window.

Note: PWGen cannot handle file sizes >2 gigabytes. Entering file sizes greater than
2,147,483,647 bytes will cause an error. If you need to generate very large files, please
contact me. I will then consider adding this feature in a future release.

Create Trigram File (<F6>)

Create Trigram File @

Source file (e.g., dictionary, word list):

C:'\Dictionaries‘\english.dic s

-

Destination file (trigram file):
C:\Program Files\PWGenmyenglish. tgm

[ Create file ] | Cloze |

Here you can create a “trigram file”, i.e., a file containing the frequencies of all possible
26% = 17,576 trigram (3-letter) combinations (aaa, aab, ..., zzz). The Source file may be
any (Unicode or ANSI) text file with words consisting of letters (lower-/upper-case) of the
English alphabet (A-Z, a-z); all other symbols—even derived letters such as &, e, 7, etc.—
are ignored! When clicking on Create file, PWGen will analyze the entire source file and
write the trigram statistics to the Destination file, which should have an extension of
.tgm. This file may be loaded via the Advanced Password Options dialog to generate cus-
tom phonetic passwords. If the destination file could be created successfully, PWGen
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shows some information about the number of trigrams evaluated and the amount of en-
tropy per letter. If all trigrams had the same occurrence, the entropy per letter would be
log,26 = 4.7. However, as every language has its own “phonetic rules”, the trigram fre-
quencies tend to exhibit large variations, which lead to a decrease in the amount of en-
tropy.

Word lists, and, even better, dictionaries are especially useful for the trigram analysis.
Novels or other long texts are suitable, too, but the resulting entropy may be lower com-
pared to dictionaries: In texts, the different frequencies of words must be taken into ac-
count, which increases the frequencies of certain trigrams and thus decreases the total
entropy even further. (The resulting passwords might be better pronounceable, though).
Typical entropy values are ~3.5 for dictionaries and ~3.0 for long texts (tested for English
and German).

Example: In order to generate phonetic passwords in a specific language with Lat-
in-based letters, it would be constructive to analyze a large dictionary (>1 megabyte) of
that language. Since all non-Latin characters are ignored by the algorithm, it may be
helpful to convert all umlauts, accented letters, etc. to allowed letters (a-z).

I,
MP Password Generator (<F8>) 3

“MP Password Generator” (or even shorter: MPPG) stands for “Master-Password based
Password Generator”. This tool allows you to create (practically) unique passwords for
various applications, such as websites, bank accounts, etc. Basically, it works as follows:
The user provides a master password and a parameter (e.g., the name of the website).
Then, PWGen uses strong cryptographic algorithms to derive a password of variable
length from these user-supplied data: HMAC-SHA-256 for deriving a 256-bit key, and
AES-256 in counter mode as cryptographically-strong pseudo-random number generator
(CSPRNG) for generating passwords. Thus, the MPPG can serve as a fully portable “pass-
word safe”, functioning without any encrypted files (which are usually essential for ac-
cessing one’s passwords). Instead, each password can be directly accessed by its unique
identifier (= parameter). By default, PWGen uses its own method to generate passwords;
however, an option is provided which enables full compatibility with the online password
generator tool Hashapass. Let’s have a look at the details of the usage:
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-

.;-.:—j MP Password Generator E' = @

Master password

Enter password... | Clear

Status: Expiry countdown:
21:26:45 New key generated. Hash: e70&. 3

Ask for password confirmation
| Show 16-bit hash value of password
| Key expires after the following time (seconds):
10

-

-

Provide compatibility with "Hashapass

Password generator

Parameter:

sourceforge. net Clear
Character set: 62 ch. /6.0 bits per ch. Length:

| 1: Alphanumeric (A-Z, a-z, 0-9) - | 16 =

Resulting password:

vA858keN<OBMIayZ s Generate

I 95 bits

| IUse as default random generator | Close

Set master password: Clicking on the button Enter password opens a dialog where
you can enter your master password. If the option Ask for password confirmation is
activated, you have to enter the password twice to avoid using a wrong password due to
a typing error in the input string.

Clear password: Click on the Clear button to clear the key cache, the parameter, and
the lastly generated password.

Once the master password has been set, a new message in the Status field is displayed,
featuring the current time at the beginning. The time stamp is added so as to inform the
user that the password has been updated successfully. If the option Show 16-bit hash
value of password is activated, the status message additionally contains a 16-bit hash
value of the password in hexadecimal notation. This hash may be helpful for quickly
checking whether the password has been entered correctly. Checking a short hash se-
quence may be more convenient than always having to enter the password twice. The 16-
bit hash has a complexity of 2! = 65,536, so the probability that a wrongly typed pass-
word has the same hash as the correct one is about 0.0015%, which may be considered
negligible if the amount of typing errors in the password is limited to a few positions. A
possible downside is that you have to remember another character string along with your
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password. Note that it is not possible to derive any information about the master pass-
word from this hash.

Key expiry: For reasons of convenience, PWGen can store the master password in mem-
ory for easy re-use. This so-called “key cache” is encrypted with a random 128-bit key,
which is itself stored in a different memory location. If the option Key expires after the
following time is deactivated, the key “expires” only when the user clears it manually, or
when the window (or the whole application) is closed. If the option is activated, the key
cache will be cleared some time after a new master password has been entered. You can
enter a value (in seconds) in the range 0-32,767 in the corresponding input box:

e A special case applies to the number “0”, which means that the key will not expire
before a new password has been generated for the first time. In this case, only the
master password will be cleared, whereas the parameter string and the generated
password will remain unaffected.

e In all other cases, a countdown for the expiry of the key will be displayed in the
field next to the Status box as soon as the user has entered a master password.
When the countdown reaches 0, the key cache, the parameter and the lastly gen-
erated password will be cleared.

Hashapass compatibility: Some users may want to be independent of PWGen with re-
spect to the MPPG; for example, when traveling, or when using other peoples’ computers,
it may not be possible to install or even execute PWGen (although the application should
run on legacy Windows versions like Windows 98, and should also run on Unix-like OS via
Wine). For these users, PWGen offers the option Provide compatibility with Hasha-
pass: The functionality is comparable to PWGen’s MPPG (although I think that the latter
is more secure—but my opinion may be slightly biased; see table below for a detailed
comparison), but Hashapass has the advantage that its website is accessible via the world
wide web and should be compatible with all popular browsers, independent of the operat-
ing system (Windows/Unix/Mac OS/...). Hashapass generates passwords in offline mode
“in the safety of your web browser, without any information being transmitted over the
Internet” (cited from the website). Unfortunately, the password length is limited (fixed) to
8 characters (= 48 bits of security), and key caching is not supported, so the master
password always has to be re-entered by the user to generate a new password. Another
downside is that the master password has to be stored in memory (albeit in encrypted
form), whereas with PWGen’s own method, a 256-bit hash value of the master password
is cached, which does not reveal any information about the master password itself.

Note: Due to the differences in key caching the selection of the Hashapass option cannot
be changed anymore as soon as the master password has been set. To change the selec-
tion, clear the key cache (via the Clear button), (de)select the option and enter the pass-
word again.
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Enter a unique Parameter into the corresponding input box. It can be any kind of char-
acter string, for example, the name of a website or application, a URL, etc. It is best to
choose a distinct, yet easy to memorize parameter. Note that the box can act both as a
drop target (receive drag & drop text from other applications) and as a drop source by
clicking on the Parameter label and dragging the text into other applications.

Choose a Character set from the drop-down list. Currently, PWGen provides 6 different
sets, some of them are available without ambiguous characters (B8G6I11|@0QDS5Z2). You
may wonder why there isn’t any option to define custom character sets. The reason is
that the MPPG functionality should be as portable as possible, that is, it should work with-
out having to remember a plethora of settings such as the exact definition of the charac-
ter set. Even if you don’t carry a personalized version of PWGen with you all the time, you
can download a new copy from the Internet and execute it on Windows (or via Wine; in-
stallation is not necessary!). The only settings you have to remember are the type/index
of the character set and the password length. If you don’t know which character set
and/or which password length to choose, simply use the default settings.

Enter the desired Password length (number of characters) into the corresponding input
box. For security reasons, I recommend using the default value of 16 characters (or
more; at least 12). Unfortunately, some applications limit the password length to only 8
characters, which may be too short for sensitive data or applications (e.g., online banking
accounts). Simply use the first 8 characters of the generated password in such cases.

Click on the Generate button to generate the password which results from the unique
combination of the master password and the parameter string. The quality of the pass-
word (measured in bits) is displayed as a number and illustrated by the length of the
“password quality bar” (see: Generate Single Passwords for more details) below the pass-
word box. Note: The font for displaying the password is the same as that for the pass-
word box in the main window.

Drag & Drop: Passwords can be dragged & dropped just like those generated in the main
window. Move your mouse to the security bar or to the “Resulting password:" label (on
top of the password box) and hold the left mouse button to initiate a drag & drop opera-
tion. Conversely, you may also drop text from other applications into the box.

Click on the symbol #**=* to hide the password behind asterisks (***).

The button Use as default random generator enables you to make PWGen’s random
generator completely “deterministic” by replacing the default generator (random pool)
with the pseudo-random number generator (PRNG) which is used for the MPPG. In this
case, all passwords and random data files generated with PWGen are “deterministic” in a
sense that they can be reproduced exactly by using the same master password and pa-
rameter again. (Note that the output of this PRNG is still cryptographically-secure, since it
is based on AES with a 256-bit key.) In contrast, the random pool was designed to never
generate the same output twice (at least the probability of a repeat should be so low that
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it is practically impossible)®. By using this option you can extend the “password hasher”
functionality practically to the entire application. Note that the random pool will still be
active and gather entropy from user inputs and system-specific parameters, but it will not
be used for generating passwords and random data files.

For technical reasons, this button is only accessible if the Hashapass compatibility option
is not activated. Otherwise, you have to clear the key, deactivate the option and re-enter
the password to gain access to it.

Please read the following notes carefully:

e WARNING 1: I cannot guarantee that the algorithms for generating passwords in
the main window ((phonetic) passwords, passphrases, formatted passwords) will
never change again in future program versions. So it might be possible that some
kinds of passwords generated in the main window using the MPPG option cannot be
reproduced in some future version of PWGen. However, this guarantee is given for
the MP Password Generator itself; if the MPPG algorithm has indeed to be changed
due to a (severe) bug in the code, I will at least provide an option for backwards
compatibility.

e WARNING 2: Never forget to deactivate the deterministic random generator as
soon as you don’t need it anymore (a warning message is displayed in the window
caption to remind you of that). It can be deactivated via the menu item Tools / De-
terministic Random Generator / Deactivate, or by pressing F7. Upon deactivation,
the random pool will be re-used as default random generator.

Reset: The deterministic random generator can be reset (i.e., set to its initial state right
after activation) via the menu item Tools / Deterministic Random Generator / Reset, or by
pressing <Ctrl>+<F8>.

The button Close first clears the key cache and all sensitive input fields (parameter and
password box) before closing the window. Note that the deterministic random generator
may still be active and has to be turned off separately (simply press <F7>).

CAUTION: I strongly recommend using a “physical” password safe such as KeePass or
Password Safe in addition to the MPPG. This double-tracked approach protects against
memory loss regarding parameters (though not the master password, of course), and en-
sures that a complete list of all your parameter-password combinations (maybe with ad-
ditional information like user names and personal comments) is available as a backup. If
you don’t want to use such a password safe, you can also keep a list of all parameters in
a simple (encrypted?) text file.

3 From a theoretical standpoint, the random pool is also a “pseudo-random” number generator because
it uses deterministic algorithms to generate random numbers. However, the entropy provided by the
user and the computer system (especially the high-resolution timer provided by the CPU) make the
construction more and more “indeterministic”.
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The following table lists the differences between PWGen’s MP Password Generator and the
Hashapass password generator:

Parameter PWGen’'s MPPG Hashapass
password length 1-32,767 characters 8 characters (fixed)
password character Currently 6 sets to choose from Baseb4 (A-Z, a-z, 0-9, +, /, =)
set
password security Up to 256 bits (variable) 48 bits (fixed)
mode of password 1) Derive a 256-bit hash H from |1) Apply HMAC-SHA-1 to the
generation the master password by applying | master password and the

HMAC-SHA-256 (to avoid caching | parameter;
the password as plaintext); 2) Take the first 48 bits and
2) Derive a 256-bit key K from H |convert it to base64, which yields
and a user-defined parameter P |the final 8-character password
by applying PBKDF2 (based on
HMAC-SHA-256) with 8192
iterations;
3) Initialize AES with K and use
AES in counter mode to generate
random numbers; change key
after every 1 megabyte of
random output
cryptographic 1) SHA-256 (256-bit one-way SHA-1 (160-bit one-way hash
primitives used hash function) function)
2) AES (128-bit block cipher with
256-bit key)
information stored in 256-bit hash H of the master Master password
encrypted key cache password
Unicode support Full support Partial support
(only the lowest significant byte
of each Unicode character is
used, so some non-ASCII
characters are not
distinguishable when used
together in a string)
availability PWGen for Windows (32-bit & Website, should work with all
64-bit), on other operating popular browsers; PWGen and
systems possibly via Wine possibly other applications

Deterministic Random Generator

This menu controls the so-called “deterministic” random generator, which can be activat-
ed in the MP Password Generator dialog via the button Use as default random generator.

Reset (<CtrI>+<F8>): Resets the random generator to its initial state, thus allowing
you to reproduce the entire sequence of random numbers generated so far.

Deactivate (<F7>): Destroys this random generator and resets the random pool as the
default random generator.
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Provide Additional Entropy

As Text (<F9>)
Provide Additional Entropy @

-

Enter or paste some text into the box below, press mouse buttons, or
maove your mouse within the window,

We're testing an international edition and would love your feedbadk
Preview beta

Skip to main content
The Guardian

home

LK

world

politics -

QK l | Cancel

Opens a window with a text box where you can enter some text (by pressing keys, past-
ing text from the clipboard, or via drag & drop from other applications), press mouse but-
tons, and move your mouse in order to feed the random pool with entropy (i.e., data
which is indeterministic to a certain extent). When you're finished, click on OK to add the
text to the random pool and evaluate it with respect to its entropy content: The text is
first converted to UTF-8 encoding and compressed; the compressed data is then fed into
the random pool, and the length of the compressed data block in bits, downgraded by a
safety factor, is added to the entropy counter of the random pool. Clicking on Cancel
skips this procedure.

Note that each interaction with your keyboard or mouse—no matter in which window—is
added to the pool instantaneously, indicated by discrete increments in the “Entropy bits”
counter (displayed in the main window). For these kinds of events, the entropy is mainly
determined by the quality/precision of their time stamps. The text in the text box as a
whole may contain some additional entropy, provided that the content is “indeterministic”
to a certain degree. To fulfill the last requirement, it is recommended to paste longer
texts from volatile, non-static sources (e.g., log files, chat protocols, frequently updated
web pages, ...) into the box. The longer the text, the more precise the entropy estimation
will be.

From File (<Ctrl>+<F9>)

Select a file the contents of which you want to incorporate into the random pool. The file
is read in 64-KB chunks, which are compressed and then added to the pool (similar to the
procedure described above). PWGen assesses each compressed byte with 4 bits of en-
tropy (corresponding to a safety factor of 0.5).
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Options
Language

Changes the program language. You will receive a warning message if the language ver-
sion is not compatible with the program version. The program has to be restarted to load
the language file. If you downloaded a language file from the PWGen homepage, extract
it into the program directory. PWGen will find it on start-up and add the language as an
item to this menu.

Configuration (<F11>) arsy

Allows you to access the main configuration of the program. In the dialog, you can select
between three pages, General, Updates, and Hot Key.

General

Change font for the GUI controls: Changes the font which is used to display the text in
most of the GUI controls in the application. The font of the password box in the main win-
dow and of the password list window cannot be changed via this function; please use the
corresponding functions in the popup menus of these controls for this purpose. The de-
fault font is Tahoma with a size of 8 pt.

Clear clipboard after the following time (seconds): When copying sensitive data
such as passwords to the clipboard, it is prudent in many cases to clear the clipboard au-
tomatically after a certain time (a few seconds should be sufficient). If this option is acti-
vated, a countdown is started whenever any text from password boxes is copied to the
clipboard. As soon as the countdown reaches zero, the clipboard is cleared automatically.

Show system tray icon constantly: Shows PWGen’s program symbol in the system
tray (next to the system clock). Clicking on the symbol will open a menu where several
functions of the program are accessible.

Minimize program to system tray: If activated, PWGen’s taskbar button will be hidden
when the program is minimized, and the program symbol will be displayed in the system
tray instead. If Show system tray icon constantly is deactivated, the symbol will be re-
moved when restoring the application.

Files

Character encoding for text files: Unicode characters are encoded as UTF-16 internally
in Windows, but when writing Unicode text to a file, it may be necessary to transcode the
characters in order to ensure compatibility with other applications/ systems. PWGen sup-
ports ANSI (caution: non-Unicode 8-bit encoding!), UTF-16 (Little Endian), UTF-16 Big En-
dian, and UTF-8 (see Unicode Support for more details on Unicode and the different types
of encodings).
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Note that in Windows (which also supports UTF-16 and UTF-8 encoding of text files), the
UTF-16 encoding is referred to as “Unicode”, which is misleading because UTF-8 is as
“Unicode” as UTF-16; both are valid Unicode character encodings!

Updates

Automatic check for updates: Enables automatic update checking at regular intervals,
i.e., daily, weekly, or monthly. Checks are performed on start-up, and a message will be
displayed if a new version is available. You can also disable this option and check for up-
dates yourself (see: Help / Check for Updates).

Hot Key

The “hot key” option allows you to associate a special key combination with PWGen.
Whenever you press the designated key(s), PWGen is called and performs an action of
your choice: The main window can be shown or restored (if minimized), and/or
password(s) can be generated.

Activation: Activate Associate the following hot key with PWGen, place your cursor
inside the input box on the right and press the desired key combination, for example
<Ctrl>+<Alt>+<P>, <Ctrl>+<F12>, <Alt>+<F8>, etc.

Actions: Select the action(s) which are to be performed when you press the hot key on
the keyboard. Note that if Generate password and show it in a message box is selected
from the list, the main window will always be restored, so that the message box can be
placed in the foreground; when you close the box afterwards, the program will be mini-
mized again if necessary.

Note that some key combinations may already be registered by other applications and
thus not be accessible.

Always on Top

Select this option to make PWGen the top-most window on the screen, meaning that the
main window and subordinate windows will stay on top even when the application is deac-
tivated and another application gets focus.

Known issues: When this option is actively disabled during runtime, the “Quick help”
window, which is opened by clicking on one of the corresponding buttons in the main win-
dow, may be empty. Please click on the button again to display the help text correctly.

Save Settings on Exit

If checked, all program settings will be saved in an .ini file (default: PWGen.ini) when the
user exits the program.

Save Settings Now

Saves the settings instantaneously.
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Help )
Open Manual (<F1>) @

Opens this manual.

Visit Website

Opens the homepage of PWGen in your default web browser.

Donate

Donations to the project are highly appreciated!

Check for Updates

Connects to the Internet to check if a new program version is available. If so, you may be
directed to the download page of this version.

Timer Info

Shows information about the high-resolution timer (HRT) called by PWGen whenever you
press a key, move your mouse, or click with your mouse (refer to High-Resolution Timer
for more in-depth information). "N/A” means that a HRT is not available on your system;
a low-resolution system date and time value is used instead, providing a resolution in the
millisecond range (roughly 1-15 ms). Note that it is recommended to run PWGen on sys-
tems where a high-resolution timer (RDTSC or QueryPerformanceCounter) is available.
The current 64-bit value (ranging from 0 to 18,446,744,073,709,551,615) of the timer is
also displayed in the message box.

About

Shows copyright information about the program.
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Additional Menus

System Tray Menu

The system tray menu, which opens when you click on the PWGen symbol in the system
tray, allows you to access some useful functions of the program. In addition to the self-
explanatory functions and those already explained above, there are two new menu items
that are only available in this menu:

Generate Password

This function quickly generates a password using the settings given in PWGen’s main win-
dow and copies it to the clipboard. It's like clicking on the Generate button with the differ-
ence that the password is not displayed but copied to the clipboard instead. This quick
generation may be useful whenever you quickly need a password.

Generate and Show Password

Generates a password (see previous menu item) and displays it in a message box before
copying it to the clipboard. In the message box, choose Yes to copy the password to the
clipboard, No to generate and display a new password, or Cancel to cancel the process.
Note that if the password is very long (longer than 1000 characters), it won’t be shown
and will just be copied to the clipboard.
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Configuration File (PWGen.ini)

All program settings are stored in an .ini file named PWGen.ini, which you can also view
and modify manually in a conventional text editor. The location of this file depends on the
mode in which the program is run, i.e., portable or installation mode®.

In the portable mode, the file is located in the program folder together with PWGen.exe,
e.g., C:\Program Files\PWGen. In the installation mode, the file is located in the %APPDA-
TA% folder, which is specific for each user on the computer. On Windows 7, for example,
%APPDATA% is defined as C:\Users\{user}\AppData\Roaming (with {user} as the place-
holder for a specific user name).

When PWGen is installed via PWGen-xxx-Setup.exe, the UseAppDataPath flag in the PW-
Gen.ini file located in the installation folder is set to "1” (TRUE) during setup, and PWGen
will store all future settings in a PWGen.ini file located in the %APPDATA% folder (if the
file doesn't exist, it will be created). If the flag is set to “0” (FALSE) or doesn’t exist,
which is the case when PWGen is extracted from PWGen-xxx.zip file into a folder without
any previous installations of the program, PWGen will store all settings in the program
folder.

In previous versions of the program (<2.5.1), PWGen could exclusively be run in the por-
table mode and thus stored its .ini file always in the program folder. However, this leads
to problems when Windows prevents applications from writing to the Program Files folder
for security reasons (e.g., when the program is installed with administrator rights and ex-
ecuted as a normal/limited user afterwards). This conflict should be solved by the intro-
duction of the installation mode and usage of the %APPDATA% folder instead of the pro-
gram folder for storing application-specific data. You can easily switch between both
modes by editing the PWGen.ini file in the program folder and setting the UseAppDataPath
flag to “0” (= portable mode) or “1” (= installation mode). If the entry doesn’t exist yet,
simply open the file in your favorite text editor and insert a new line into the “[Main]” sec-
tion of the file:

[Main]
UseAppDataPath=1

Thus you can easily make an installed version portable by copying the program folder to a
USB flash drive, for example, and changing the UseAppDataPath flag in the PWGen.ini file
to “0".

4 This setting also applies to the randseed.dat file containing 32 bytes of entropy from the random pool
(see: Random Pool).
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Command Line Options

Command line switches have to be prefixed by either one or two minus characters (- or
--), or by a slash character (/). PWGen currently supports the following switches:

Switch Meaning

ini=<filename> Uses the .ini file specified by <filename> for reading and storing the
settings of the program (instead of using the default .ini file,
PWGen.ini). Include the file path in quotation marks ("") if it contains
any spaces. If the file does not exist, PWGen loads the default
settings on start-up and will try to create the file when the settings
are to be saved.

readonly Prevents any automatic writing to the disks/volumes on the
computer, i.e., PWGen will not automatically save any data to the .ini
file and the random seed file (randseed.dat). The user can still save
the program settings by actively calling the corresponding function in
the main menu. If no .ini file is specified by the user, PWGen will load
the default PWGen.ini; if this file does not exist, PWGen will load its
default settings stored internally. The random seed file will be read
on start-up but otherwise will not be modified in any way.

Example: PWGen.exe /ini="C:\My Passwords\my.ini" /readonly loads the settings from
the file my.ini in the folder C:\My Passwords, and prevents any automatic writing to the
disks/volumes on the computer.
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Questions & Answers

Which security level is appropriate for my password?

As always, this depends on your specific needs. Passwords corresponding to the lowest
security level—for example, account passwords for not-so-important websites (there are
certainly many of this kind)—should have at least 40-48 bits. A higher (say, “intermedi-
ate”) security level is provided by 64-bit passwords. For sensitive data, a password of at
least 72 bits is reasonable. To protect really sensitive data, the security should be at least
90 bits. Data that have to be protected for several centuries (if not thousands of years)
should be encrypted with a password of at least 112, better 128 bits. Currently, it’s tech-
nically infeasible to break 128-bit keys, and this statement will hold for many, many
years. (In fact, it's quite unlikely that there will be ever found a practical way to search a
128-bit key space by brute force. If you don’t trust in this assumption, go with 256-bit
passwords—they are practically unbreakable.)

The following table shows the lengths of N-bit passwords created by different character
sets and word lists.

N A) letters A-Z B) upper-/ C)B + D) words from E)
(bits) (4.7 bpc) lower-case including 37 | list with 8192 combination of
letters, “special words (13 D and B
numbers 0-9 characters” bpw) (examples)
(5.9 bpc) (6.6 bpc)
40 9 (=42 bits) 7 (=41 bits) 6 3 (=39 bits) 2 w., 3 ch.
48 10 (=47 bits) 8 7-8 4 (=52 bits) 3w, 2ch.
64 14 (=65 bits) 11 (=65 bits) 10 (=66 bits) 5 (=65 bits) 3w, 5ch./
4 w., 3 ch.
72 16 (=75 bits) 12 (=71 bits) 11 6 (=78 bits) 3w, 6c¢ch./
4 w., 4 ch.
90 19 (=89 bits) 15 (=89 bits) 14 (=92 bits) 7 (=91 bits) 4 w., 7ch./
5w., 5ch.
112 24 19 (=113 bits) |17 9 (=117 bits) 5w, 8ch./
6 w., 6 ch.
128 27 (=127 bits) |22 (=131 bits) |20 (=132 bits) |10 (=130 bits) |5w., 11 ch./
6 w., 9ch./
7 w., 7 ch.
256 54 (=253 bits) |43 38 (=251 bits) |19 (=247 bits) |10 w., 21 ch.
(max.)

In the table header, “"bpc” means “bits per character” and “bpw” means “bits per word”.
The table shall give you an idea of the lengths of passwords composed of different char-
acter sets. It shows how the size of the character set or the size of the word list, respec-
tively, influences the overall password length. It's obvious that the higher this size (i.e.,
the more items there are to randomly choose from), the shorter the resulting password
for a given “security” in bits.
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The next table shows the times to search the entire key spaces of N-bit passwords (given
by 2"); that is, for every N-bit password, it shows the time to “break” it. The speed (num-
ber of keys per second) with which this “brute force attack” can be carried out is limited
by the attacker’s financial resources (the amount of money the attacker can dispense), as
well as by current technology. Note that neither of these variables can grow infinitely:
First, limited financial resources are commonplace; second, the computer power is limited
by the propagation speed of electromagnetic waves. Considering this second assessment,
it becomes evident that attacks on 128-bit keys are infeasible (at least in this
universe ...).

N (bits) | 10°s™ 10° st 102 st 105 s* 10% st 10 st 10 st
40 12.7 days |18.3 min |1.1s <1s <1s <1s <1s

48 8.9 years |3.2d 4.7 min <1s <1ls <1s <1ls

64 5.8E5y 584.9y 213d 5.1h 18.4 s <l1ls <1ls

72 1.5E8 y 1.5E5y 150 y 54.6 d 1.3 h 4.7 s <1ls

90 3.9E13y |3.9E10y |3.9E7y 3.9E4 y 39y 14.3d 20.6 min
112 1.6E20y |1.6E17y |1.6El14y |1.6E11y |1.6E8Yy 1.6E5 y 165y
128 1.1E25y |1.1E22y |1.1E19y |1.1F16y |1.1E13y |1.1E10y |1.1E7y

To give you an idea of the computer power available nowadays: The network distrib-
uted.net broke a 64-bit key in 1757 days (searching 83% of the key space) with a rate of
10! keys per second. More than 70,000 computers took part in this challenge. A similar
project, aimed at breaking a 72-bit key, is still running with a current rate of ~5-10'! keys
per second. Provided that the rate remains constant over the entire running time, it would
still take over 200 years to search the entire key space. So, given an attacker who has
access to a computer power comparable to that of distributed.net with a rate of 10 keys
per second, a 72-bit key may be considered secure. To put it another way, a 72-bit key is
sufficient for protection against attackers who lack large financial resources. Now imagine
an attacker who can afford a search rate which is one million times higher than that of
distributed.net, resulting in approximately 10'® key trials per second. A 72-bit key is not
sufficient here, so we should resort to a key of at least 90 bits in size. If the attacker is
able to afford even more money and thus more computer power, a key size of 112 bits
and more should be strongly preferred.

Of course, these incredibly big numbers for key spaces and their complexity are pretty
impressive—but don’t be misled by the conception that a sufficiently long, randomly cho-
sen key automatically provides 100% security! Only megalomaniac fools try to break keys
that are far beyond the scope of computer power. Clever attackers know that there are
easier, faster and more effective methods to get hold of a password. Think of spyware,
keyloggers, computer viruses, security flaws in operating systems, spies, double agents,
truth drugs, torture... only to name a few malicious non-academic methods to find a key
(you may call them “real-life brute force attacks”).
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Which security measures should | take when generating
strong passwords?

First, you should make sure that your system is not infected with malicious software (like
spyware, etc.). Before generating a “really strong” password, make sure that the random
pool is “full of entropy”, i.e., the “total entropy bits” counter has a value of at least 256
bits. When you copy passwords to the clipboard, clear the clipboard if you don’t need
them anymore (click on the Clear Clipboard button or select the corresponding menu item
in the system tray menu). To clear the password box in the main window, just click on
Generate, so that the contents of the box will be overwritten. To clear the password list,
just close the window. PWGen automatically overwrites the text in this list when the win-
dow is closed or when a new password list is generated. Don’t save sensitive passwords
as plaintext anywhere on your hard disk. Instead, it is recommended to encrypt them
(use the text encryption utility for this purpose, see: Tools) and save them as ciphertext.

Last but not least, I recommend you to regularly wipe the free space on your hard disk,
since it may contain remains of sensitive data which were swapped out by Windows some
time ago. A first-rate tool for accomplishing this task is Eraser.

Is it possible to memorize those random passwords?

Yes, it is, although it may appear rather impossible on first sight. Maybe passphrases
composed of random words are easier to memorize for you than random characters. Try
to memorize the passphrase by “visualizing” the words or by making up a funny “story”
where these words play a role. Random characters can be memorized by really learning
them by heart; if necessary, write them down somewhere for a short time, and as soon
as you have succeeded in truly memorizing them, destroy the material irreversibly. You
could also try to make up a story, the words of which begin with a character of the pass-
word. You see, lots of possibilities. So with some effort, you will eventually succeed in
memorizing a strong password generated by PWGen.

In most cases, it's sufficient to memorize one or two really secure passwords (that is,
having a security of at least 72 or better 90 bits); the others can be easily stored in a

password safe (see: Can I use PWGen as a password safe?).

What about pronounceable passwords?

As of version 2.3.0, PWGen allows generating phonetic (pronounceable) passwords based
on language-specific trigram frequencies; this feature is accessible by entering <phonetic>
into the Character set field (see: Include Characters). However, note that the tri-
gram-based password generation is restricted to languages with Latin-based alphabets
(letters a-z)! Alternatively, you may generate artificial, pronounceable “words” by apply-
ing the Format Password option. Passwords generated by the rule %4[%3[%c%v%] %], for
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example, will look like this: sapifu kixezu cehiwu lukuro. You can play around with the
placeholders for consonants and vocals to create passwords that suit your needs.

Can | use PWGen as a password safe?

Yes, this is possible via the text encryption function of PWGen (see: Tools). You can use a
simple text editor (like Notepad++, but Windows’ rudimentary Notepad does it, too) to
manage your “password safe”. Whenever you need a password, for example, for an Inter-
net service, use PWGen to create a random password of any length and store it together
with the user name (or the URL as an alternative) in the safe. To “close” the password
safe, copy the whole text block to the clipboard, encrypt it with a secure master password
and replace the plaintext of your password safe with the ciphertext in the clipboard. This
may not be as comfortable as using a real password safe (like KeePass or PasswordSafe),
but it works and is secure (as long as your master password is secure, of course).

Alternatively—or in addition to a “classical” password safe—, you may want to have a look
at the MP Password Generator in PWGen, which encapsulates a “password hasher” func-
tionality: The user provides a secret master password and a unique parameter string
(such as the name of the website for which the password is to be created), and the pro-
gram generates a (practically) unique password from this data. Thus, an encrypted data-
base is not required anymore; instead, each password can be reproduced by entering the
user’s master password and the specific parameter.

Which kinds of word lists does PWGen accept?

In principle, PWGen accepts all (Unicode or ANSI) text files containing some kind of
“words”. These words must be separated by a line break, a space, or a tabulator. The up-
per limit for the word length is 30 characters (you may decrease this length down to 1,
see: Advanced Password Options). Word lists must contain at least 2 different words.
Note that PWGen does not accept duplicate words; the procedure that checks for dupli-
cates is case-sensitive, i.e., it does not ignore upper-case and lower-case letters! Howev-
er, you can force PWGen to convert all letters to lower-case via Advanced Password Op-
tions. PWGen will not add more than 1,048,576 words—upon reaching this limit, the pro-
gram will stop the progress. If your word list contains more words, you can try to select
shorter words by decreasing the maximum word length.

As explained before, the program accepts text files consisting of words. Here is an exam-
ple which uses the words in license.txt to create the following passphrase:

original, (and number. (whether judgment

Note that PWGen does not remove punctuation marks or other non-letter symbols.
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How to interpret the information about the random pool?

Whenever you generate “indeterministic” events by pressing keys, clicking with your
mouse or by moving your mouse within PWGen’s windows, the application collects “en-
tropy” from messages sent by Windows, as well as from a high-performance counter
(RDTSC processor instruction, if available; alternatively, the program calls functions pro-
vided by the Windows API; see: High-Resolution Timer). Additionally, the program derives
entropy from several system-specific parameters, which is done in regular intervals in the
background.

The actual “random pool” has a size of 32 bytes and can thus provide a maximum Shan-
non entropy of 256 bits. As explained in the Step-by-Step Tutorial above, the pool is com-
pletely filled with entropy if the progress bar is full—but the entropy counter can exceed
this limit anyway. Note that this counter only serves informational purposes—it’s abso-
lutely impossible for the random pool to yield more than 256 bits of Shannon entropy!
The counter just informs you about the total amount of entropy bits added to the pool,
which might be of your interest if you consider PWGen’s entropy estimations as too opti-
mistic.

If you generate passwords, PWGen uses the pool contents as key for the AES (Advanced
Encryption Standard) cipher which is then used for generating random numbers (see:
Random Pool for more technical details). This means that a certain amount of entropy is
“consumed”, so to speak, from the random pool. As a consequence, the entropy counters
will be decreased by the entropy content of the generated password(s). So generating
five 48-bit passwords will consume 240 bits of entropy from the pool. (Of course the
counters cannot fall below 0.)

Mind you: this loss of entropy only applies to the case that you actually use the generated
password(s). If you discard a password and generate a new one without refilling the ran-
dom pool, the entropy of the discarded password has not been lost. However, PWGen pre-
sumes that you use every password you generate. So once you have filled the random
pool with entropy, you may effectively ignore the loss of entropy when generating pass-
words, as long as you don’t use them. This can be explained as follows: Whenever you
generate passwords or, more generally, random data using a fixed 256-bit state of the
random pool, the entropy of the generated random sequence can never exceed 256 bits.
If the apparent (!) entropy of the sequence exceeds 256 bits, it would be “easier” (in
purely theoretical terms) for an attacker to find the 256-bit state of the random pool than
to find the actual random sequence originating from this very 256-bit state. To put it an-
other way, each 256-bit data block within the sequence has an independent entropy of
256 bits when treated separately from the rest, but adding more data from the same se-
quence to a 256-bit block doesn’t increase its security. This does not mean that only the
first 256 bits of random output are secure and the further output is deterministic/insecure
and thus useless. It simply means that you cannot increase the entropy of the random
output beyond 256 bits. Theoretically, an attacker could predict the output following the
first 256 bits, provided that he is able to break the 256-bit state of the random pool.
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However, as emphasized multiple times within this manual, breaking 256-bit keys is prac-
tically unfeasible by any standards (well, neglecting the exploitation of time travels, black
holes, parallel universes, etc. here...).

Note: PWGen uses additional time stamps, independent of the 256-bit state of the ran-
dom pool, when generating random numbers, which can increase the entropy up to 384
(256+128) bits. Nevertheless, since such security-relevant estimations should be made in
a rather conservative way in the realm of cryptography, the internal limit is set to a fixed
value of 256 bits.
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Technical Details

Random Pool

Whenever you interact with your computer—for example by pressing a key, by clicking
with your mouse or by moving your mouse—you create an event that is, unlike most in-
ternal computer events, to a certain degree indeterministic or unpredictable. The term
“indeterministic” means here that these events can afford a certain amount of random-
ness—and let it be just a few bits. (Due to their random character, indeterministic events
are sometimes—rather loosely—referred to as “entropy”; this is not to be confused with
the entropy term in thermodynamics!) By calling a high-performance timer (like the
RDTSC processor instruction available on all modern CPUs, see: High-Resolution Timer)
when the user generates such an event we can efficiently make use of its random charac-
ter. Moreover, the operating system Windows provides additional (and again partly inde-
terministic) information such as the type of Windows control where the message was sent
to, the cursor position and the (low precision) date and time when the message was sent.

We can gather all this entropy from user-generated events in a so-called random pool. At
this point it is essential to note that this data does not have to be purely random—it is
sufficient that it contains some bits of uncertainty (the more, the better, of course). The
“trick” is now to apply a cryptographic hash function to this entropy in order to “distil”
randomness from this data. This operation yields data that looks truly random, although it
cannot contain more information than the original partly-random data. If we now collect
entropy amounts large enough to provide (in total) sufficient uncertainty, we can gener-
ate sequences that do not only look random, but in effect are random. For example, to
generate a highly secure 128-bit password, we fill the random pool with enough user in-
puts (i.e., entropy) first—by entering some text on the keyboard, or by moving the
mouse, etc. Then we use this data to distil the required 128 bits of truly random data
from the pool and convert it to a secure password. This is the basic concept of random
number generation in PWGen. The “real implementation” is a bit different.

In mathematical terms, the process looks as follows: HMAC-SHA-256(K, M) is used as se-
cure hash function. The HMAC algorithm uses an additional key K to compute the 256-bit
message-digest of a message M. (Note that in this case, the “key” does not have a special
purpose here; we simply use the HMAC algorithm instead of the plain hash function be-
cause the former is thought to have better “randomness extraction” properties compared
to the latter.) To distil randomness and to generate a new pool, the old pool contents and
the entropy data are processed in the following way:

(1) P« HMACP, S || T),

where P is the random pool (32 bytes), HMAC is the HMAC hash function, S is the entropy
data of any length, and T is a time stamp from a high-resolution timer. “||” denotes sim-
ple concatenation of the sequences. PWGen uses a memory block of a defined length to
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buffer subsequent entropy inputs; when this buffer is full, it will be hashed according to
eqn. (1) and cleared (overwritten with random data) afterwards.

To generate cryptographically secure random numbers, PWGen uses the AES (Advanced
Encryption Standard) encryption algorithm in counter (CTR) mode. AES is set up with a
256-bit key and operates on 128-bit blocks. In order to derive a key K for AES, the pool is
first updated (eqgn. (1)), then the pool is hashed:

(2) K« HMAC(T, P).

This procedure ensures that P cannot be derived from K, and vice versa. Random num-
bers are then generated by encrypting a 128-bit block counter C (3a), which is incre-
mented by 1 afterwards (3b):

(3a) R « E«(O),
(3b) C«<C+ 1.

C is initially derived by encrypting two 64-bit time stamps. R is the next 128-bit random
output, and Ex is the encryption function with key K. As the attacker neither knows K nor
C, he cannot predict the next number R, even if he knows the entire previous sequence.
Furthermore, K and C are changed regularly to ensure that, even in case of a state com-
promise (leakage of sensitive data in K and C to the attacker), the attacker cannot recon-
struct those random blocks generated before the key change (“forward secrecy”). Using
time stamps when updating the pool and when generating secret counter values C adds
to the security of the construction, since they provide a certain degree of unpredictability.

All sensitive data (random pool, entropy buffer, AES key, counter, ...) are held in RAM to
prevent it from being swapped out to the hard disk. The pool is made indistinguishable
from random by clearing all buffers with random data after use. This will make it difficult
to locate the pool in RAM by means of any easily identifiable sequences.

For performance reasons, PWGen delays the recognition of mouse movements. For every
mouse input, PWGen counts a maximum of 10 bits of entropy (max. 8 bits for the timer
plus 2 bits for cursor coordinates); for every keystroke, PWGen counts a maximum of 9
bits (1 bit for the key code). In addition to these user inputs, PWGen collects entropy
from various system parameters every 15 seconds, which yields 24 bits of entropy in PW-
Gen’s estimations. Note that these estimations are rather conservative—the “real” quality
of these entropy sources is likely to be higher.

In order to preserve the entropy collected during runtime, PWGen writes a random seed
file (randseed.dat) in the application folder. This 32-byte file is read on start up, its con-
tents are fed into the random pool, and the seed file is immediately overwritten with new
data afterwards. PWGen updates this file in regular intervals while running as well as on
exit. If you don’t want PWGen to write this file, you can use the /readonly command line
switch (see: Command Line Options).
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Text Encryption

The text encryption can be divided into five steps: UTF-16 to UTF-8 Unicode conversion,
Text compression, HMAC generation, encryption and base64 conversion.

1) The UTF-16-encoded text as received from the Windows API is converted to UTF-8
encoding.

2) The text is compressed using the LZO1X-1 compression algorithm.
3) The 256-bit HMAC of the compressed text is generated.
4) The compressed text is encrypted using AES with a 256-bit key.

5) The encrypted text (ciphertext) is converted into “readable” characters (base64
character set).

Let’s start with an overview of the encryption procedure: To derive the 256-bit key from
the password provided by the user, a version of the key derivation function PBKDF2 is
used, which applies the hash function HMAC-SHA-256 to the user password along with a
randomly chosen 128-bit initialization vector (IV; also called “salt” in this context). This
process is repeated many times (8192 iterations) in order to make password cracking
much more difficult.

The text which is to be encrypted consists of a header structure (3-byte “magic” identifi-
cation string, version number and length of the uncompressed text) and the compressed
text (variable length). This assembly is encrypted in CBC (Cipher Block Chaining) mode in
order to hide patterns in the plaintext:

(1a) C « EK(P,' ) Ci.l).

C: describes the ith block of ciphertext (i.e., the encrypted text) and P; the jth block of
plaintext (i.e., the unencrypted text). G, is the IV which is also used in key derivation.
Again, Ex is the encryption function with K as key. The symbol “"&"” denotes an “exclusive-
or” bit operation. In decryption mode, eqn. (1a) can be reversed in a simple way:

(1b) P« Di(Ci1) & Ciy,
where Dy is the decryption function.

Before encrypting the plaintext, a so-called HMAC (keyed-Hash Message Authentication
Code) of the text is calculated. In general terms, the HMAC can be considered as a mes-
sage digest of the ciphertext with K as parameter. It serves to check the decryption
process in two ways: 1) Is the key correct?, and 2) Has the ciphertext been altered in
any way (data integrity)? Note that PWGen cannot distinguish between these questions,
i.e., it can only check if the HMAC is correct or not, but it cannot tell you on the basis of
the HMAC if the decryption failed because of a wrong key or because of a corrupt cipher-
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text. As the attacker doesn’t know the key, he cannot compute valid HMACs himself; in
particular, he cannot modify the ciphertext and then make any valid modifications to the
HMAC due to the strong non-linearity of the HMAC algorithm. Any modifications of the ci-
phertext will be recognized during the decryption process. PWGen uses HMAC-SHA-256 to
generate a 256-bit HMAC of the entire plaintext block. This 32-byte sequence is appended
to the ciphertext after encryption.

In the last step, the binary encrypted data generated in the previous three steps are con-
verted to the base64 format (a character set consisting of 64 “readable” characters:
mixed-case letters, numbers, and the characters +, / and possibly =) in order to make it
“readable” by text editors, e-mail programs, etc. In the encoding scheme used by PWGen,
lines are wrapped after 76 characters to allow for a smooth display of the text in editors.
(Some editors, such as Windows’ Notepad, may crash [or take a very long time] when the
user attempts to paste very long texts consisting of only one single line. Therefore, it
seems to be prudent to create multi-line texts with shorter but more numerous lines.)

The decryption procedure is essentially the reverse of the encryption procedure. There
are several “checkpoints” in this procedure, which serve to verify the validity of the key
(“Did the user enter the correct password?”) as well as data integrity (“Is the ciphertext
still in its original state or has it been modified in any way?").

1. The ciphertext is converted from base64 (6-bit) characters to 8-bit bytes. Check
#1: If there are illegal characters in the text, or if the resulting text is shorter than
64 bytes, or if the text length is not a multiple of 16, the ciphertext structure is in-
valid, which means that the text is either corrupted or not encrypted by PWGen.

2. The first 16 bytes of the ciphertext are decrypted and the “magic string” in the
header structure is checked. Check #2: If the decrypted identification string and
the default string do not match, then either the key is wrong, or the beginning of
the ciphertext (first 32 bytes) has been modified.

3. The remaining ciphertext is decrypted to give the compressed plaintext.

4. The HMAC is generated and checked. Check #3: If this verification fails, either the
key is wrong, or there were modifications somewhere within the entire ciphertext.
However, as the verification of the identification string in the header must have
succeeded in step (2), it is actually more likely that the ciphertext has been modi-
fied.

5. Finally, the plaintext is decompressed and converted from UTF-8 to UTF-16 to give
the original plaintext. [Check #4:] Note that the decompression and the Unicode
conversion can theoretically fail, although this should never happen under “normal”
circumstances. If this error really occurs, the most probable cause is a heavily ma-
nipulated ciphertext, i.e., a text that has not been generated by PWGen.
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CAUTION: Always check the correct decryption of the ciphertext before discarding the
plaintext!

High-Resolution Timer

If possible, PWGen uses a high-resolution timer (HRT) the value of which is added to the
pool when you press a key, move your mouse, or click with your mouse. It is also used
when generating cryptographically strong random numbers to increase the security of the
generator. Due to the high resolution of this timer every value possesses a certain degree
of unpredictability, particularly when measuring the timer intervals between user-generat-
ed events such as keystrokes and mouse clicks. Therefore, it can provide a relatively high
amount of entropy. Moreover, consider the following worst-case scenario that an attacker
got hold of the entire state of the random pool (“state compromise”) and thus could theo-
retically predict the entire sequence of random numbers that will be generated. Adding
the HRT value before generating the next random sequence offers a certain protection
against this scenario: The attacker can read the timer value himself, of course, but it is
actually very unlikely that he reads the same value due to the high time resolution of the
timer (typically nanoseconds on modern CPUs). Since the HRT is available very quickly, it
is used in every critical situation of the random pool, i.e., when updating the pool and
when generating random numbers.

PWGen can use the following timers (listed with descending priority):

1. Time stamp counter (RDTSC instruction): The RDTSC processor instruction re-
turns the number (64-bit) of cycles since reset. The time resolution therefore de-
pends on the clock rate of the processor: On a 3 GHz processor, for example, each
cycle takes ~0.3 nanoseconds. The RDTSC instruction is present on all x86 proces-
sors since the Pentium and provides an excellent high-resolution, low-overhead
way of getting CPU timing information.

2. QueryPerformanceCounter (Windows API): According to the Windows SDK,
this function returns the current value (64-bit) of the high-performance counter.
This is probably just a wrapper for the time stamp counter on most systems, but
the return value may be different on multicore computers. Calling this function is
slower than executing RDTSC.

3. Low resolution timer (Windows API): Alternatively, if neither RDTSC (1) nor
QueryPerformanceCounter (2) are available, PWGen retrieves the current date and
time of the system. The resolution of this timer is only in the millisecond range and
thus much lower (by several orders of magnitude) than that of the high-resolution
timers (1) and (2), but may still be sufficient for measuring keyboard and mouse
events.

On start up, PWGen checks if the RDTSC instruction (1) is available, which should be the
case on all modern computers (Pentium processor onwards). If this check fails, PWGen
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tests QueryPerformanceCounter (2). If both tests fail, PWGen uses the current system
date and time (3). However, if (1) or (2) are allegedly available, PWGen briefly checks if
they can really hold the high resolution; this test might fail when PWGen runs on emulat-
ed systems, for example, and if it fails, PWGen uses (3) instead.

Note that PWGen constantly checks the resolution of the timer values and decreases the
entropy rating if the resolution is low (i.e., in the millisecond region). Although the securi-
ty of the random generator does not entirely depend on the entropy of the timer values
because a lot of other parameters are additionally incorporated into the pool, it is strongly
recommended to run PWGen on systems where a high-resolution timer (1 or 2) is present
due to the higher entropy and due to the increased security in critical situations of the
random generator. You can check which timer is used by selecting the item Timer Info
from the Help menu.
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Contact & Further Information

Contact

If you have further questions, critical remarks, suggestions for the future development,
bug reports or something else to tell—comments are always welcome!—, feel free to con-
tact me via e-mail:

c.thoeing@web.de

Translations

Translations of PWGen into languages other than English and German are always very
welcome. For a list of translations that are available so far, see here. If you want to up-
date an existing translation file or create a new one, I recommend using the PWGen
Translation Utility that I have created especially for this purpose. This program uses the
file German.Ing (which accompanies every release of PWGen) as a template for your own
translation. Please always use the latest version of the Translation Utility.

Word Lists and Trigram Files

Have a look at the PWGen project page to access additional word lists and trigram files
suitable for generating passphrases and phonetic passwords, respectively. If you have
created a word list or trigram file and want to share it with other users, please send me
the file, so that I can publish it on the web. Alternatively, you can find special word lists in
several languages on the “Diceware” homepage; however, you may want to extract the
actual words (without the numbers/indices before the words) first before using the “Dice-

ware” lists in PWGen.

Please Donate!

As you can certainly imagine, developing and maintaining a software project like PWGen
requires a lot of effort and commitment, especially if you have other responsibilities in
your regular job as well as at home. If you like PWGen and use it frequently, please do-
nate to the project. Your donations will encourage me to further develop the application
and keep it bug-free. Thanks!
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