
Csv File Search 3.0 Help

CsvFileSearch 3.0 is a simple search utility that provides an easy way to search the
contents of multiple csv files.
It is easy to use for the novice and also flexible enough for the advanced user.

How it works.
You choose a directory of csv files to be scanned. You can then search all csv files
found in that directory and sub directories.
The search results are displayed as a separate block for each file.
The column titles found on the first row of the searched file are used as the headings
for the search result block.

The path of the parent file is shown in column 'A' ('Source'). A double click on this will
open the parent file in your prefered application. The row number is shown in
column 'B' (Row)

The first row of all csv files must contain column titles.

Getting Started

1. Choose a search path. Click on the yellow folder icon, or select 'File>Choose
Search Folder' from the top menu bar.

2. Enter the search criteria in the 'Search Criteria' box. This can be a single
word/phrase or multiple words/phrases separated by double slash (//).

3. Press <ENTER> or click on the 'Search' button.

Note: You can cancel the search at any time. Records from the incompleted search
will be displayed.
If a search is cancelled, the current file being processed will complete before search
is stopped.

IMPORTANT
Criteria separators
The criteria separators in this version are different to previous versions.
A double forward slash (//) must be used to separate each criteria.
Specific columns may be searched by including a column id or title and "=="
before the criteria.
Example: Surname==hardy // firstname==john

Note that in version >=3, the comma is no longer used to separate
criteria. It is now used to separate multiple columns.
Example: firstname,forename==john

The example above will look for "john" in columns "Firstname and Forename".
Only the columns specified will be searched.

Search options.

Search Path

This is the base folder to search for csv files.
Click on the yellow folder icon and choose a folder to scan. Sub folders will also be
scanned for csv files.

Search Type

* FullText Search Searches the csv files directly. This search type can be slow.

* Index Search A fast search of a prebuilt database.
The database index will be built automatically when you first search or when the
search folder/files change.

Lookup Type
This is the record lookup type. 'Soundex', 'Metaphone' and 'Regex' always use a
'FullText' search.

* Contains: Search criteria can be anywhere in a field.

* Starts With: Search field must start with the search criteria.

* Exact Match: Search field contents must be exactly the same as the search
criteria.

* Soundex: Search using the soundex algorithm

* Metaphone: Search using the metaphone algorithm

* Regex: Search using regular expressions.

* SQlite: Search the database using sql statements.
For more information on this option, see 'Using the SQlite search option'.

Match Type
Set this the way you want to match search criteria to the field data.
Note: See 'Criteria separators' for more info.

Match Any: If any of the search criteria is found. (OR)
example: Surname,FathersName==Hardy//Forename==John would search as
follows:-
Surname == 'Hardy' OR FathersName == 'Hardy' OR Forename == 'John'

Match All: All the search criteria must be found. (AND)
example: Surname,FathersName==Hardy//Forename==John would search as
follows:-
Surname == 'Hardy' OR FathersName == 'Hardy' AND Forename == 'John'

Search Criteria
The text to search for. You may specify columns.
Multiple words and phrases may be used. Separate criteria with double forward slash
(//).

'Search' Button
Click this to start a search. (or press <ENTER>)

'Clear Grid' Button
This will clear the grid.

Column Id Reference
This is simply a list of column titles found in the files you are searching. A reference
to the master worksheet column id is appended to the title. Example: Surname (F).
This means that a column title 'Surname' was found in column 'F'.

Note: CsvFileSearch requires all searchable files to have column titles.
If you have files that do not have column titles in the first row, then you will see
garbage here.

Column 'A' source file link.
To open the original parent file of a search result, 'Double Click' column 'A' (Source)'.
The number of the row in the parent file is shown in the left column.

Column 'B' row number.
This is the rownumber of the record found in the source file.

Menu options

File menu
Saving all results into a single file
Select 'File>Save results as single file' from the top menu bar.
All results are saved into a single csv file.

Saving results into a separate file for each searched file.
Select 'File>Save results as multiple files' from the top menu bar.
Choose the folder to save the files into. The results are saved as separate csv files.

Tools menu
Refresh column reference list
The purpose of column reference list is simply to supply you with a reference
to the column title locations.
When searching mixed files, a column title may be in several different
columns.

Rebuild Index
Rebuild the database for the current search folder. This is usually done
automatically by the application when changes are detected.

Context menu (right click)
Use this to copy some or all of the results to the clipboard.

Copy Current Row
This will copy the current row to the clipboard as tabulate data.
The column titles will also be copied.

Copy Selected Rows
This will copy the all selected rows to the clipboard as tabulate data.

To selected rows.
1. Place the cursor on the first row to start select.
2. Hold down 'SHIFT' and click on the last row you want to select.
3. Right click with the selection and choose 'Copy Selected Rows'

Copy All
This will copy ALL results to the clipboard as tabulate data.

Criteria separators
Each criteria must be separated by double forward slashes (//). Depending on
your selection of the 'Match', the // will represent AND or OR.

Example: If 'Match Type' is set to 'Match ALL' then a criteria of William //
John // Richard would search anywhere for William OR John OR Richard

Note that in version >=3, the comma is no longer used to separate criteria. It
is now used to separate multiple columns.

Specific columns may be searched by including a column id or title and "=="
before the criteria.

Important: A double forward slash (//) must be used to separate each
criteria.
Example2: Surname==hardy // firstname==john

Example2 will look only in column 'Surname for "hardy" and only in column
'Firstname' for "john".
The AND/OR will be decided by your choice of 'Match Type'.

Note: Only the columns specified will be searched. Searches are NOT case sensitive.

Multiple searches for the same column are also possible .
There are two ways to do this...

1. Specifiy each column separately with the same criteria.

Example: Surname==Hardy // FatherName==Hardy
In this example, if the "Match" option is set to "Match ALL", the result would
be true if "Hardy" is found in "Surname" AND "Name".
If the "Match" option is set to "Any", the result would be true if "Hardy" is
found in "Surname" OR "FatherName".

2. Specify multiple columns
Multiple columns may be specified and each column must be separated by a
comma.

Example1: Surname,FatherName==Hardy

The columns in each criteria are 'OR'. That is to say, in example1 above, the
cell contents of either Surname OR FatherName need to match 'Hardy'.

In example1, if a 'Match' type of 'Match All' (AND) is selected, the '//'
separator would represent AND , but the comma separated columns in each
criteria would still be OR.

(Surname OR FatherName) == Hardy AND (Forename OR Fornames)
== John

Notes:
Column "A" and "B"are never searchable. These are the 'source' and the result
'row' number.

Soundex, Metaphone and Regex searches are considerably slower than normal text
searches, and can only be used with 'FullText' searches..

The sqlite search lookup option allows extra search options for advanced
users.

Using the SQlite LookUp Type

The sqlite lookup type allow advanced user to search the database using sql
statements.

The Index (database) Tables
In the database each csv file found in the search folder is automatically given
a unique table name. Each tables contain records (rows) of data taken from a
single csv file.
The table information can be viewed via the edit menu. Edit > Show table
info

In CFS all tables are searched with a single statement, and you do not need to
know the names of the tables. CFS will add the table name to your sql
statement.
You can omit the first part of the statement (SELECT * FROM INDEX WHERE) and
just enter the column_title and expression.
Example: surname LIKE '%Hardy%';

If you choose to enter the full statement, use 'INDEX' as an alias for the real
table name. The correct table name will be added automatically.
Example: SELECT * FROM INDEX WHERE surname LIKE '%Hardy%';

Wildcard Characters
A wildcard character can be used to substitute for any other character(s) in a
string.

In CFS wildcard characters may be used with the LIKE operator.

The wildcards are:

 % A substitute for zero or more characters

 _ A substitute for a single character

Using the '%' (percent) and '_ ' (underscore) wildcards

The following SQL statement selects all records with a Surname starting with
the pattern "Har".
Example: surname LIKE 'Har%';

The following SQL statement selects all records with a Surname containing the
pattern "ard".
Example: surname LIKE '%ard%';

The following SQL statement selects all records with a Surname starting with
any character, followed by "ardy".
Example: surname LIKE '_ardy';

Operators and Conditions.

LIKE
The LIKE operator is used in a WHERE clause to search for a specified pattern
in a column.
Syntax: columnname LIKE pattern;
Example: surname LIKE '%hardy%';

Note: When using the 'LIKE' operator, the criteria is not case
sensitive.

GLOB
The GLOB operator is used to match only text values against a pattern using
wildcards.
Unlike the LIKE operator, GLOB is case sensitive and it follows syntax of
UNIX for specifying the following wildcards.

 The asterisk sign (*)
 The question mark (?)

The asterisk sign represents zero or multiple numbers or characters. The ?
represents a single number or character.

The basic syntax of * and ? is as follows:
SELECT * FROM tablename WHERE columname GLOB '*criteria?'

Example: SELECT * FROM index WHERE surname GLOB '?ardy';

You can combine any number of conditions using AND or OR operators.
Here are number of examples showing different GLOB clauses with '*' and '?'
operators:

 column_name GLOB '184*' Finds any values that start with 184
 column_name GLOB '*200*' Finds any values that have 200 in any
position
 column_name GLOB '?00*' Finds any values that have 00 in the
second and third positions
 column_name GLOB '2??' Finds any values that start with 2 and are
at least 3 characters in length
 column_name GLOB '*2' Finds any values that end with 2
 column_name GLOB '?2*3' Finds any values that have a 2 in the
second position and end with a 3
 column_name GLOB '2???3' Finds any values in a five-digit number that
start with 2 and end with 3

Example, which would display all the records from 'INDEX' where BaptismDate
starts with 'Apr' and has 4 characters at the end starting with '184' (1840 to
1849).
BaptismDate GLOB 'Apr*184?';

Example which would display all the records from 'INDEX' where a Surname
has a hyphen (-) inside the text: SELECT * Surname GLOB '*-*';
Note: When using the 'GLOB' operator, the criteria is case sensitive.

NOT
NOT is used with other operators to find records NOT matching the criteria.
Example: surname NOT LIKE 'hardy%';

= or ==
To find records EXACTLY matching the criteria (case sensitive).
Example: surname == 'Hardy';

!=
To find records NOT exactly matching the criteria (case sensitive).
Example: surname != 'Hardy';

<>
To find records greater or smaller than the criteria (case sensitive).
Example: surname != 'Hardy';

>=
To find records greater or equal to the criteria (case sensitive).
Example: year >= '1840';

<=
To find records less or equal to the criteria (case sensitive).
Example: year <= '1840';

>
To find records greater than the criteria (case sensitive).
Example: year > '1840';

<
To find records less than the criteria (case sensitive).
Example: year < '1840';

IS NULL
To find records containing a null value.
Note: There should never be null records in this database.

IS NOT NULL
To find records not containing a null value.
Note: There should never be null records in this database.

AND & OR
The AND & OR operators are used to filter records based on more than one
condition.

The AND operator displays a record if both the first condition AND the second
condition are true.
The OR operator displays a record if either the first condition OR the second
condition is true.

When combining AND OR conditions, it is important to use round brackets so
that the database knows what order to evaluate each condition. (Similar to the
way of ordering operations in maths)
Example: surname LIKE '%Hardy%' AND (forenames LIKE '%George%' OR
forenames LIKE '%Mary%');

BETWEEN
The BETWEEN condition selects values within a range.
Example: aged BETWEEN 1 AND 14 ;

The BETWEEN condition can also be combined with the NOT operator.
Example: aged NOT BETWEEN 20 AND 40 ;

LIMIT
Limit the number of records returned (from EACH file).
Example: surname LIKE 'Hardy' LIMIT 20 ;

IN
The IN operator allows you to specify multiple values in a WHERE clause.
Syntax : column_name IN (value1,value2,...);

Example: forenames IN ('George', 'Mary','William');
Note: When using the 'IN' operator, the criteria is case sensitive.

ORDER BY ASC|DESC
The ORDER BY clause is used to sort the result-set by one or more columns
(for EACH file).

ORDER BY sorts the records in ascending order by default. To sort the records
in a descending order, you can use the DESC keyword.
Example: forename like '%william%' ORDER BY surname ASC, birthyear ASC ;

SPLIT
SPLIT is a special operator used to split a file into smaller files. SELECT must
be used in this statement.
Syntax is: SELECT * FROM tablename SPLIT numberofchunks ;
This can be shortened to SELECT tablename SPLIT numberofchunks ;

Example: SELECT table8 SPLIT 20 ;
This would split the file indexed in table8 into 20 files and save them in a
folder called 'CFS_SPLIT', which can be found in your 'Home' folder.

Note: The file is processed, not the database records. The original file is NOT
changed.
The table name for each file can be viewed by clicking on the 'Tools' menu
and selecting 'Show table info'.

COMPARE
COMPARE is a special operator to compare two tables. SELECT must be used
in this statement.
Syntax is: SELECT * FROM tablename COMPARE comparetablename ;
This can be shortened to SELECT tablename COMPARE comparetablename ;
The results returned will be from the 'comparetablename' table ;

Example: SELECT table8 COMPARE table9 ;
The above example would return results of records found in table9 that were
NOT found in table8.

To reverse the compare, just reverse the table names...
SELECT table9 COMPARE table8 ;

You can of course do this the sqlite way, column by column...
SELECT DISTINCT * FROM table8 WHERE (Surname NOT IN (SELECT
DISTINCT Surname FROM table9));

You would need to repeat for every column...
SELECT DISTINCT * FROM table8 WHERE (Surname NOT IN (SELECT DISTINCT
Surname FROM table9)) OR (Forenames NOT IN (SELECT DISTINCT Forenames
FROM table9)) OR (Age NOT IN (SELECT DISTINCT Age FROM table9)) OR
etc..

Which is why I created the COMPARE operator.

String Literals
String literals are always surrounded by single quotes (') or double quotes (").
For example:

'Les Hardy' String literal with single quotes
"Les Hardy" String literal with double quotes

Number Literals
Number literals can be either positive or negative numbers that are exact or
floating point values. If you do not specify a sign, then a positive number is
assumed.
Here are some examples of valid number literals:

72 Integer literal with no sign (positive sign is assumed)
+72 Integer literal with positive sign
-72 Integer literal with negative sign
72.607 Decimal literal

Date and Time Literals
Date and time literals can be expressed as strings. Here are some examples of
valid date and time literals:

'2015-04-27' Date literal formatted as 'YYYY-MM-DD'
'2015-04-27 11:44:23' Datetime literal formatted as 'YYYY-MM-DD HH:MM:SS'

Boolean Literals
There are no boolean literals in SQLite, instead, boolean literals are stored as
numeric values. Here are some examples of valid boolean literals:

1 Equivalent to TRUE (stored as a number)
0 Equivalent to FALSE (stored as a number)

License
CsvFileSearch is free for non-commercial use.

For more information contact les@webmayo.com

